AD=A092 216 aIR FORCE INST OF TECH WRIGNT-PATTERSON aAF8 OH % 9/a
rONSlDERlTIOg FO:TAN ASSEMBLER SCHEDULED NULTI-M!CROPROCESSOR -—ETC(U)
R _L STEWA
UNCLASSIFIED AFIY-Cl-ao-‘l

-

ke jlas 23

"I"E_IO ez ﬂ||:"2~2
= e NS

L i b
= e

fizs it pee

L

MICROCOPY RESOLUTION TEST CHART

AR o s AT A, K Tl Bl 4 e WM i S A TR

N v e s e — s o S - g
e T

et - ~ P i tw » r~m.
& Y .
- 3 . e
' LINCI ASS ' _
! ECURITY CLASSIFICATION OF THIS PAGE (When Duw‘l‘fn'cwd)‘ /\
EPORT DOCUMENTATION PAGE kAN NS
. REPORT NUMBER 2. GOVT ACCESSION NO| 3. Rﬁcmw;uoc NUMBER
— gf-411- . AD1ACTL 1(4_ Ve
F i 5. TYPE OF REPORT & PERIOD COVERED
11 ' Cons1derat1ons for an Assemb]er Schedu]ed T
HE YERA
6 Multi-Microprocessor System, S e - -*-J SIS/BI3 ATYON
. meee e . 6 PERFORMING OG. REPORT NUMBER
]) . A)
- ; “; T W T 8. CONJRACT OR GRANT NUMBER(s)
’ R1chard Lee/Stewart R U .
i 2 By .ﬂ/lp
s T, B
9. PERFORMING DRGANIZATION NAME AND ADDRESS ey

- 1910, PROGRAM ELEMENT PROJECT, TASK
AFIT STUDENT AT: Auburn University@ “Ma 5'1/91' s ’/Apsls

11. CONTROLLING OFFICE NAME AND ADDRESS ?’“ . ATE
AFIT/NR (12 Aug wamtested 5

WPAFB OH 45433 . -{43- -NUMBER OF PAGES - —_
107

14. MONITORING AGENCY NAME & ADDRESS(i!f different from Controlling Office) 15. SECURITY CLASS. (of this report)

/ 41 5/ ! "UNCLASS

["15a. oecc.r«ssmc:mou DOWNGRADING
USRI | SCHEDULE

ADA09221
;

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED ‘ T‘C

'.. = QQ" ;'

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if difterent from Repo

ve?™ [o mne

18. SUPPLEMENTARY NOTES
RAQVED PUBLIL RELEASE: IAW AFR 190-17 Alr Forcg Insti
go. }\ mm-rammt:t: of Technology (aTg)
C Major, USAF

. FB, OH 45433
Director of Public

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

THIS DOCUYTNT IS BYET (UALITY PRACTICABLE.
THE COPY L'L"”‘ SHIT ’O CTCCONTAINED A

SIGNIFICANT 10204 OF PAGES nhIGHDDm J

REPRCDUY. LLGI %LY.
20. ABSTRACT (Continue on reverse side 1l necessary and identity by block number)

!8 ATTACHED
for | N
12 8611 24 157

:g DD , S5, 1473 Eoimion oF 1 nov 6815 OBSOLETE UNCLASS

SECURITY CLASSIFICATI N OF THIS PAGE (When Dete Entered:

@100 R

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY. ‘

L == *2

CONSIDERATIONS FOR AN ASSEMBLER SCHEDULED
HULTI-MICROPROCESSOR SYSTEM

Richard Lee Stewart

Certificate of Approval:

V. R. Heath, thalrman
Assistant Professor
Electrical Engineering

rofessor
Electrical Engineering

/7,4:;,6?\[) 7/{,(I\ b ——
V. P. Nelson

Assistant Professor
Electrical Engineering

Paul F. Parks, Dean
Graduate School

v .

s

T

CONSIDERATIONS FOR AN ASSEMBLER SCHEDULED
MULTI-MICROPROCESSOR SYSTEM

Richard Lee Stewart

A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfilliment of the
Requirements for the
Degree of

Master of Science

Auburn, Alabama

August 26, 1980

CONSIDERATIONS FOR AN ASSEMBLER SCHEDULED
MULTI-MICROPROCESSOR SYSTEM

Richard Lee Stewart

Permission is herewith granted to Auburn University to make copies of

F this thesis at its discretion, upon the request of individuals cor
- institutions and at their expense. The author reserves all publication
3 rights.

L:(

H Signature of Author

Copy sent to:
Name

VITA

Captain Richard Lee Stewart, son of Harry Baker Stewart and Anne
(Butler) Stewart, was born December 7, 1946, in Pittsburgh,
Pennsylvania. He graduated from Hillsboro High School, !ashville,
Tennessee, in 1664, In August, 1964, he entered General Motors
Institute and received the degree of Bachelor of Mechanical Engineering
(Automotive Design) in August, 1969. He immediately entered the United
States Air Force, Officer Training School, and was commissioned a Second
Lieutenant on November 13, 1969, at Lackland AFB, Texas. He received
the Pilot Rating on February 12, 1971, at Vance AFS, Cklahoma. After
various flying assignments he entered the Graduate School, Auburn
University, in September, 1976, in the Air Force Institute of
Technology, Civilian Institution Program. In March, 1973, he was
assigned to the Directorate of Computer Sciences, Armament Division, Air
Force Systems Command at Eglin AFB, Florida. He married Poonsri,
daughter of Jang and Prem Runkshokgam of Bangkok, Thailand, in Decemter,
1971. They have three children, MNoporn Harry, Panawjidt Anne, and
Wichan Richard.

e ot s e e o s

[PRI S VR PSR

PP T O S PO

,
OO/ L 4 W
R« it 00 2 PRSI o et

THESIS ASSTRACT
CONSIDERATIONS FOR AN ASSEMBLER SCHEDULED
MULTI-MICROPROCESSOR SYSTEM

Richard Lee Stewart

Master of Science, August 26, 1980
(B.M.E., General Motors Institute, 1969)

116 Typed Pages

\ Directed by J. Robert Heath

3

into pass one of an INTEL 8080 cross assembler. For an assembler level

A parallel suitability or processability checker was incorporated

source program, it yields a suitability factor for parallel processing,
a jump structure analysis, and the nodes of Ramamoorthy's Loop Free
Program Graph shown on the assembly language program source list. This
information can be used to construct the Loop Free Program Graph. |

This assembler modification is based on previous research by
Ramamoorthy and others which achieved dynamic scheduling of high level
language parallel processable tasks, at run time, in a multiprocessing
enviromment. Differences in analyzing high level language (FORTRAN) and
assembly language programs are explained.

1

suitability checker and investigate favorable characteristics of

/ﬁight assembly language source programs were analyzed to test the

assembly language loops with respect to parallel processability. - b

-

T

"/?\Suggestions are made for further development of a parallel task

recognizer for assembly language programs using Ramamoorthy's
connectivity analysis method.

Design considerations are outlined for development of an assembler
scheduled multi-microprocessor system. The machine would execute source
program partitions in parallel on a production basis a large number of
times. This would be possible after a combined assembly and schedule of
the load modules,

Applications envisioned are microprocessor based controllers or
instruments that would achieve increased speed at less cost Dby
performing such operations as input, calculation, retrieval, and output
simultaneously. Also, economical machines could be designed to study
aspects of parallel processing for large scale computers and hign 1level

languages. .

;

et s s o Acieiodei kki A R T
ARG & s 1 Ve [ty bardilins
e i < .

TABLE OF CONTENTS

LISTOF FIGURES . v & v v ¢ o ¢ ¢ ¢ ¢ o o o o o o o s o s o o o o s
I. INTRODUCTION & v v 4 ¢ ¢ o o « o ¢ o o o s o o o o o o o o s
II. CONSIDERATIONS AND ASSUMPTIONS e e e e e ..

Favorable Characteristics of Parallel Processable Programs
Advantages of Assembly Language Suitability Checker
Assumptions for Assembly Language Suitability Checker

ITI. ALGORITHM FOR SUITABILITY CHECKER . . . « . « « « v o o« . .

Common Areas and Variables
Counters and Other Variables
Instruction Scan

Checking Loop Constructs
Nest Check

Final Checks

Jump Analysis

Loop Free Program Graph

IV. SUITABILITY FACTOR AND DIAGNOSTIC MESSAGES

Suitability Factor

Possible Errors Noted by the Analysis
Warnings Made by the Analysis

Notes Made by the Analysis

V. EXPERIMENTAL RESULTS & & ¢ ¢« ¢ ¢ v o ¢ v o o o o s o o o o s

Findings
Explanation of a Sample Program Output

VI. CONCLUSIONS AND RECOMMENDATIONS « ¢ & v ¢ ¢ ¢ ¢ ¢ v v o v o

Significance of this Work

General Conclusions

Suggested Complementary Work

Scheduling Considerations

Configuration and Use of the Multi-Microprocessor System

E Ie LIOGRAPHY @ o & e & e a3 ¢ 6 e @ ¢ s & s T " e s+ s s s s e s s »

vii

(8]}
n

69

78

P PO

ot -k]+ 7 g S

1 x
|
' APPENDICES 4 & 4 o & o o o o « o o o s o o o 2 o o o o s o o o o s 80 k
A. Suggested Interprocessor Communications :
L B. Assembler Modifications Listing
C. Program Specifications of the Modified Assembler
D. INTEL 8080 Op-Code Groups
i
1
]
i
i
3 1
K

viii

e e ka5 e & e ARG =

LIST OF FIGURES 1

?; : 1. Graphs Used By the Parallel Task Recognizer 5
‘ ; 2. FORTRAN-Like Loops in Assembly Language « « « . . 13 g
R, 3. Parallel Processing WithinalLoop + ¢« ¢« ¢ v o« & + & 15]
. U4, Modifications to the Assembler Program « « « o« ¢ o & 17 !t

5. Analysis for a Simple Microprocessor Program 18

6. Variable Initialization . . « + « & v v v ¢ o v v v v 0 o o . 22

T. Flowchart for Instruction Seanner . . « . « v ¢« ¢« « « o« o o« 24

8. Flowchart for Finding Forward Jump Destinations 26

9. Flowchart for Checking Loop Constructs 27
10. Task Convergence and Overlapped Loops + « « v ¢ ¢ ¢ o« « « « 34 %
11. Flowchart for Nest Check . . ; « « « 35 é
12. Flowchart for Final Checks and Juﬁp Analysis . « v ¢« + v o . 28 ?
13. Flowchart for Subroutine LSTOUT Modification 41 |

14, Flowchart for Subroutine FIMDLP . . . « « v v v v ¢ ¢ o o v uy

15. Length of Nested LoOpS '« & &« ¢ ¢ ¢ & ¢« o ¢ s o o o o o o o o U7 i

16. Experimental Results et e e e e e e . o« . B3
17. Sample Program Outpuf « « v « v o ¢« ¢ o ¢ o ¢ ¢ & 2 o o o & . 55
18. Loop Free Graph of the Sample Program . « « « « « o o o« o & & 57

19. PACE Instruction Decoding Sequence 16

G il
[URSR THE

I. INTRODUCTION

This thesis addresses the problem of how to better exploit the 1lcw
cost of microprocessors and overcome the drawback of limited speed
capability. The method investigated involves using several co-operating
parallel processors for faster execution of a single program that will
be assembled once and run many times. This woculd spread the
optimization cost over a very large number of applications [1].

Many reasons have been given for parallel processing. A very
significant increase in system throughput is theoretically pcssible
depending on the system and the application [2-10]. Mmost every
computer program has some potential for parallel processing, because‘the
input/output (I/0) can be overlapped with the function performed by the
computer [ﬁ1]. The relation of parallel processing to time sharing z2lso
has been discussed as justification [12]. Speed is not the only reascn
however.

Memory and processors can be used more effectively.
Microprocessors are now very inexpensive, and using more processors
better utilizes the more expensive memory. This is possible in a wice
range of applications. Most microprocessor syétems are interrupt driven
and should have good potential for parallel processing because <the

interrupt task can usually be done concurrently with the main program.

2

Yhile improving existing systems, the benefits can be compounded by

s bl

developing design guidelines for future systems.

Using microprocessor systems would be a cost effective means for
further research on parallel processing. This research is needed,
because many such systems have been suggested, but few attempts have

K been made to partition the application programs into parallel
processable segments [8,9]. Some work has been done in this areas for
use with large scale computers, however.

Solutions to the problems of synchronizing shared resources have

been found by Djkstra, Knuth, and Coffman [11]. Previcus research on

parallel processability and task partitioning on high 1level language 4
programs has been done by Bernstein [12] and Remamoortny [1,11,13-15].
How does this previous work relate to microprocesscrs?

Ramamoorthy's results with FORTRAN programs are applicable to a ;
variety of uses on a limited scale [1,14]. The source program nmust be
less than 200 executatle statements. It is executed on a large sczle

CDC 6600 computer, and the parallel processes are scheduled dynamically

during execution. Only non-nested DO loops are allowed. Little f

apparent interest or exploitation of these techniques was shown between

3 1971 and 1978. GSut in the past 18 months there has been increased
commercial interest in multi-microprocessor systems and concurrent

processing [2-9]. However, multi-microprocessor software and systems

have not developed along the guidelines, suggested by Ramamoorthy, for
large computers.
The currently developing distributed multi-microprocessor systems

(master/slaves) do not fully utilize the master processor and are

DA ARG 2 cat i s U

3
usually uniquely specialized systems that azre not generally applicable
to a variety of uses. Thney a&are, therefore, sometimes not as cost
effective as possible. This is parallelism at the operating system
level rather than at the application program level; multiprogramming vs.
parallel processing.

There is an untapped potential for a more generalized system that
makes parallel processing almost transparent to the user or
nicroprocessor system designer. The following chapters will discuss:

1. Factors bearing on the problem;
2. Partial solution - suitability checker;
3. Interpretation of results;
B, Suggestions for further work.
It is assumed that readers have a rudimentary knowledge of cormoen terms

used to describe an assembler program.

e . &

cenn AR e mar

i et T - e — o i HMRAGANE o 004 L I bt ntlh -
TR - PO B =

II. CONSIDERATIONS AND ASSUMPTIOHNS

The problem of implementing an assembler scheduled rwulti-
microprocessor system may be broken into five parts [1,4]. First,
appropriate candidate programs must be found by using a suitability
checker. Secondly, parallel processable portions of the program must be
identified using a parallel task recognizer. Thirdly, synchronization
primitives must be added for interprocessor communications and
scheduling. Fourthly, utilizing the parallel task recognizer and

scheduling information, the program must be 1loaded into memory for

parallel procsssing. Lastly, the memory organization and system
hardware must pe defined. These are significant problems for assembly
language source programs because of the simplicity and fundamental
nature of microprocessor based systems. Therefore, an attempt was not]
made to solve the entire problem. This thesis deals mainly with part
one and portions of part two of the problem. This includes, for
assembly language source programs, making a suitability determination
and finding elements of Ramamoorthy's reduced or loop free program graph
(LFPG) [13,14]. The LFPG has a node for each instruction in the scurce
program except for the case of lcops. For loeps, all instructions or

tasks are grouped together and represented as a single node; thus the

term, loop free. Fig. 1 illustrates examples of the graphs used by

Ramamoorthy's Parallel Task Recognizer. It should be emphasized that

Original Program to Add
32 Bit Numbersl

Task Source Code
1 .ADD 32 IXI
2 DAD
3 XCHG
4 DAD
5 stc
6 cMe
7 .IOOP LDAX
8 ADC
9 STAX
10 DCX
11 DCX
12 DCR
13 JP
14 RET

Analysis of Task Transitions<

Graphs Used by the Parallel Task Recognizer

Function of Action
B, 3 immed. operand rB =3
B task 1, r H&L r H&L = r H&L+r B&C
task 2, r D& exchg.r D&, r H&L
B tasks 1 & 3 r H&L = r H&L+r B&C
nothing set carry
task 5 reset carry
D task 3 load addend 1
M tasks 4 6 &7 add acc.+r H&L, carry
D task 8 store result
D task 3 r D& = r D&E -1
H task 4 r H&L = r H&L - 1
C rC decrement loop index
.LOOP task 12 loop if positive
task 13 return
Figure 1

1This subroutine requires that register pair H&L point to the first
Register pair D&E points to the first byte of

byte of the first number.
the second number.

Register C is set to two.

2Pransitions exist only between tasks which change a value and the

next task which uses that same value.

It is not really necessary to

analyze task transitions within the loop, but this is done for clarity

and completeness.

As 1s shown in the Parallel Processable Task Graph on

the following page, a transition exists from task 1 to task 2, because
task 2 uses the results of task 1, etc.

e e o mp— o

O~

Permissible Transition Loop Free or Parallel Processabdle

Add & OQutput

or Program Graph) Reduced Program Graph™ Task Graph? ;
Program Task BEquivalent Task Task Partition
O (1) 1
i ' (2) Input & [(2) 2
! (3) Point (3) 3]
® OANR
] 'E, Prepare G’ !
Jo ®
@
(® &)

Return

former task 14

o A e b

Figure 1 (continued)

Graphs Used by the Parallel Task Recognizer }

3Ea.ch node represents a statement in the program shown on the

previous page. Unless an element is a branch, its successor is the next
node.

uProgram representation in which all elements of a loop are
considered as a single task or a node on the graph.

5Time ordering exlsts between nodes connected by arrows. Partitions
are identified by using Ramamoorthy's Matrix Method of Precedence
Partitions [143. Partitions would be executed by two processors. Tasks 1
in the same partition are executed concurrently. The numbers to be added

and the result would be stored in common memory. The subroutine could
run up to 19 percent faster, i.e., 16 tasks vs. 21 tasks for the complete
process. Exactly how much faster depends on the overhead of 1

initialization and transfer of information %bYetween the two processors.
If the routine were being called from a 1loop, the benefits would
increase with each 1iteration of the 1loop.

7

Ramamoorthy's work was based on high level language source programs.

Here, the source programs are in microprocesscr assembly language which

significantly complicates the overall task. This chapter first
discusses the problems of implementing a suitability checker by checking
for favorable characteristics in pass one of the assembler. Second, the
differences in working with FORTRAN and assembly language are addressed,

because Ramamoorthy's work dealt only with FORTRAN programs.

Eavorable Characteristics of Parallel
Processable Programs

Bernstein stated the conditions necessary for parallel processing
and why program suitability is programmer dependent when dealing with
implicit (vs. explicit) parallelism [12]. The szme task or algorithm
could be coded more or less favorably depending on the programmer's
style or sequence. Based partially on Bernstein's work, Ramamoorthy
devised a hueristic formula for determining suitability for parallel
processing [1].

The formula has nine variables used with FORTRAN in calculating a
suitability factor, SF:

SFzNB+ NA+ [P+ NC+ ND= NI=NG=-LD
LP - LD LP

where: NR = READS or input

NA = Arithmetic statements

NP = PRINTS or output

NC = CALLS _

ND = DO loops (loops of known boundaries and
iterations)

MI = IF's or conditional branches

NG = GO TO's or unconditional branches

LP = Total executable statements

LD = Total statements in DO loops

8

This formula was based on research gathered after using Ramamcorthy's

parallel task recognizer to analyze FORTRAN programs. It shows as plus

factors, those tasks that could be done simultaneously given that

Bernstein’'s conditions were satisfied. The negative factors represent
f; : conditions that delay scheduling decisions until execution time, i.e.
K conditional branches and unconditional forward branches. These state-
ments can generate intricate paths which complicate prediction of
process flow [12]. The factors LP and LD reflect the fact that DO loops
enhance possibility for parallel processing provided the loops are not
too long with respect to other partitions (tasks that can be executed as
a block). Obviously, if the loops are very long, other partitions would
be executed before the loop finished. One processor would have to wait
so long for the loop to finish, that benefits of parallel processing
would be lost. It would be better in such a case to process
sequentially and not incur the overhead of establishing éarallel
processes, because the overhead might cancel any benefits of parallel
execution.

If this works for FORTRAN it would seem to be applicable for any
language. But it is significant to note that although the zlgorithm for
a suitability checker or parallel task recognizer s language
independent, its implementation is obviously dependent upon the level

and structure of the source 1language to a great extent. Thus a

completely universal application is not possible [11,14]. If further
work is necessary to implement the recognizer on another language, why

choose assembly language?

= T e N N ? k*“J

=

Ao

Advantages of Assembly [anguage
Suitability Checker

There are many significant reasons to analyze assembly language for
parallel processing. First, there is a large potential to improve many
existing assembly language programs, since they are usually more memory
efficient than high level language programs [3]. Second, this research
could indicate the need for high level languages such as PASCAL that
allow explicit indications of parallelism to be usec on microprocessors
(8,11]1. Third, we can identify and standardize the most effective
parallel constructs as desirable explicit capabilities of high level
microprocessor languages [9]. Fourth, utilizing implicit parallelisms
in existing assembly language does not require the programmer to learn a
new language. Fifth, studying parallel processing with small computer
systems would be cost effective. And when the results are tGtetter
understood, the techniques may be applied to more scphisticated systems
for further benefits. How then can this analysis be applied to assembly
language?

Two main differences exist between FORTRAN and assembly language
with respect to impiementing the suitability checker and parallel task
recognizer. One, INTEL 8080 language has no explicit constructs for
loops of known iteration or length that can be easily determined Ly
scanning a single line of the source program. But loops in assembly
language can be compared to certain characteristics of FORTRAN-like
loops, to find the 1loops for which the analysis applies. Two,
determining the task transitions may not be as easy in assembly language

as in FORTRAN [1,12]. In the parallel task recognizer the parallel

e ——— -

‘;_,_v-‘.-,‘,..ﬁ‘,_

10

processable task graph requires that a determination be made when the
output or result of one task is used by or input to another task. This
is fairly easy in FORTRAN, because memory locations are stated
specifically in the instructions [12]. It is not sc obvicus in assembly
language, because many transitions depend on more subtle conditions such
as flags set or interrupts enabled. Although these can be determined it
is not always an easy matter of scanning. The recognizer will require
rmore scophistication. But there are other considerations besides
language.

Why use one time preload scheduling instead of dynamic scheduling
as is done with some high 1level languages? It is because a
microprocessor is usually driving a dedicated system, no matter how

general its structure may be. It does not need the flexibility provided

. by a dynamic scheduler nor the associated overhead. €y using one time

scheduling, optimization cost is spread over thousands or mnillions of
program executions [1]. According to the author's preliminary
investigation with the NATIONAL SEMICONDUCTOR microprocessor <amily, the
processor speed does not permit dynamic schecduling at the user program
level that achieves any meaningful benefit if it is indeed rossible.
This conclusion is supported by others [E].

Dynamic scheduling with one processor acting as an interpretation
or scheduling unit for other execution units and transfer units has been
suggested by Lorin [10]. Because non-microprogramable processors are
too slow to function as the scheduling unit, this function was
relegated to the assembler for a one time schedule at load time, gut

even this method requires much analysis time. Therefore it is very

e e e wme o

[P

i

e

e
o
.

1"

desirable to assure scme hope of success. This is the reason for the
suitability checker [1].

The suitability checker is important, because the parallel task
recognizer requires large arrays with the number of elements equal to
the square of the number of executable statements in the source program.
This not only requires a large amount of memory, but requires more
execution time to manipulate the arrays. The suitability checker,
however, requires significantly smaller arrays. The largest 1is only
four times the number of executable statements. Also there are two
reasons why the parallel task recognizer alone 1is not sufficient for
analyzing assembly language. First, it does not reveal anything sabout
loop structure that would aid subsequent checking for lcop iterations.
Secondly, it reﬁuires ﬁore array manipulation for assembly language to.
find loops, because they are not explicit as in FORTRAN. But, all
information required is available in assembler pass one, so it can make
a determination before using the parallel task recognizer. The results
could be indicated and decisions requested interactively or made based

on a predetermined value.

) i cor 4 bly 1
Suitability Checl

Two main assumptions were made to implement the suitability checker

with respect to INTEL 8080 assembly language. These assumptions involve

determining instruction types and recognizing loops. The INTEL 8080 was

chosen because of experience with it, and because it is one of the most

widely used microprocessors. These assumptions should apply to most any

microprocessor language for recognizing instruction types and

Far

12
recognizing loops. Recognizing instructions 1is obviously machine
language dependent. The decision to use op-codes or rnemonics to
recognize instructions depends on how op-codes are grouped and how well
mnemonics relate to a class of instructions based on the variables in
Ramamoorthy's suitability formula. The easiest method should be used
for the machine in question. For the INTEL 8080, checking op-codes
works very well to recognize instruction types. See Appendix D. But we
must also be able to recognize loops.

Assume for assembly language that any backward jump is a loop.
Although this is not the same as a DO loop, assume that these lccps are
for a known number of iterations. If necessary, some form of check can
be done later to determine which locps are for indefinite iterations.

All types of FORTRAN-like 1lcops can be described in assembly
language with three basic constructs shown in Fig. 2. Tnree loocp
classes are necessary because loops are classified structurally by their
entry and exit. For a simple loop the conditional jump provides entry
and exit. For an intermediate or complex loop the unconditional jump
back always provides a possible entry. The conditional jumps around the
jump back provide a possible exit. If either entry or exit is not pos-
sible, there is probably a logical error. Why is it necessary to check
for structure? First, because overlapped locps are not allowed in this
analysis. Secondly, because analyzing structure makes some forms of
error detection possible by determining if the minimum structure is not
present. Thirdly, because it will allow later analysis of factors

affecting iterations for scheduling considerations. After analyzing the

%

[

s i e g A S o

CLaSS 1 CLASS 2 CLASS 3
SIMPLE INTERMEDIATE COMPLEX
_,4> CONDITIONAL JUMP _/4 UNCONDITIONAL JUMP

All loops may be represented as one of these three classes.
The class determination factors are the entry and exit to

the loop. Cther jumps may be present but are not required.
If the minimum conditions are not satisfied, there is prob-

ably a logical error.

. ﬂ

U

OVERLAPFED

QOverlapped loops are not allowed, because they cannot ve
considered as either a single task or two discrete tasks
by the suitability checker or the parallel task recognizer.
They will be noted by the suitability checker. The over-
lapped 1loops would cause the results to be invalid, unless
the overlapped loops are nested inside a third loop. 1In
this case they would make no difference, because all tasks
included in the outer loop would be considered a single task.

Figure 2

FORTRAN ~ Like Loops in Assembly Language

i,

14
loops with respect to structure, what is <the significance of other
Jjumps?

There are three other situations wherein jumps are related to the
loops: jumps out, jumps around, and internal jumps. Jumps out of the
loop in excess of minimum requirements are assocciated with the loop.
Possible transitiops are noted, but the extra jumps are not significant
to the structural classification. Jumps around the loop are not
associated with the loop, because they eliminate it as a task, but the
fact is noted and analyzed for possible errors. Other internal jumps in
excess of minimum requirements are associated with the loop, because the
récognizer will treat the whole loop as a single task. Also, each locp
could be further analyzed as a subprogram to check pessibility for
parallel processing within the loop. See Fig. 3;

Based on these assumptions it is possible to define a lcop, wnat
loop classes are present as shown in Fig. 2, and how other jumps relate
to the loops. Basic rules are established for checking type and number
of instructions, recognizing loops, and deciding how they =affect the
subject program in terms of its suitability for parallel processing.

The next chapter discusses the suitability checker algorithm.

G=N
B=3+G
1
A=B+¢
D=E+F
{
G=axD

[}
H
e

M

3=383+gG

I

START PARA-

LLEL PRCCESS

15

Example of a loop as a single

task to find 3.

Example of using two processes

to find A and 3
D=ES+F
simultaneously,
1 RESME [then find G after
I returning to a single process.
G=AXD
1
1
Figure 3

Parallel Processing Within a Loop

e b

o PRI .

E‘
E
:
E
|
;
F
f

TII. ALGORITHM FOR SUITABILITY CHECKXER

The assembler suitability checker 1is based on Ramamoorthy's
research discussed in the previous chapter. The suitability checker
presented herein has been adapted for use with assembly language. These
changes to the cross assembler are shown in Fig. 4. Durirg assembler
pass one it scans the instruction's op-code to count different types of
instructions for the suitability factor, SF. If a Jjump 1is found, it
checks to determine the type of jump and build a jump tabdble. At the
end of pass one, the loop analysis process requires scarnning from the
end of the source program to the beginning to see if mirnimal
requirements for loops are met, check for possible errors, calcuiate the
SF, and find the nodes of the loop free program graph (LFPG). Tne
output is shown in the short example listing in Fig. 5.

The loop analysis is the most lengthy and complex porticn of the
algorithm. The source code is checked backwards, because it is possible
to work back from the jump and determine what is included in the loop.
Multiple jumps cannot start at the same point, but they can terminate at
the same point. The objective is to associate as many jumps as possible
with loops. Cthers not associated must be isolated and are, therefore,
negative factors in the suitability equation. This is s¢, because every
statement contained in a loop is treated as a single task by

Ramamoorthy's parallel task recognizer.

16

cace. i

INITIALIZE
ADDITIONAL
VARIABLES

|
|
|
PASS ONE ‘
|
|
l

INSTRUCTICN SCAN
TO DETERMINE
INSTRUCTION TYPES
FOR S F CALCULATION

THESE DO STATEMENTS
REFER TO THE PRCCRAM
IN APPENDIX B,

PASS TWO

= e == BEXTSTING PROGRAM

.
"
-————-—-T—.—-_

CHECKX LOOP CONSTRUCTS
(DO 590)

CHECK 3ACK JUMPS

JUMP RELATIONSHIPS
ARS DETERMINED BY
CCMPARING EXEZCUTABLE
INSTRUCTICH NUMBERS.

(Do 574) OBJECTIVE IS TO
CHECK FORWARD JUMPS| ASSGCIATE AS MANY
(DO 577) JUMPS AS POSSIBLE
T WITH LOCPS.
FIND NESTED LCOPS
S P CALCULATION

Figure &4

ADDED PROGRAM

Modiflcations to the Assembler Progranm

SRR §

18

ot
roe

o]
PR 4

-uer

-1

v

iy

EY

SRR AP RLPRET R AT

A

9=

P TR Y R

.

N e)

vo% oo oA %
sen
(-
¢ (%)
A
. - >
. Yoo
y .
+ b "
(RN v [FX]
(LI 2 ¢ f
. 0% 8 o
E L T I ‘
R
oot
L I
L U A
iy C 5
oL
[VAT PR
LA NEE AN
[Fa] &)
Tl et
LA O [PV
[A
e oy 2
o> ur
LR LA A
O t—r
a2 PR Y PP | B4
T qn IY Y e
[NR It
VY
C e
>
e}y T
(k-
(ol IR P
TR L P o IR
(TR AN T Ph N
(
1
b — anieTe
-t [TS
K- B 4]
P
.
.
s
- o
I bt
[B
. g

4« T [V e
R TSRS
- ’ -
B REBRF IXLFIACEL AT L2 N

e
T3

PR VIS

TR
D%
[ERER 3
Ly %
[A 4
— %
[FAREAT 4

T -
LN AT RRLZEBIREI LS

LR
P
Ch
»
%
[N

!
(KN

L d
~

LY s X 3

YA TERS

AC» L
i.
ey
r~
C
-t
-

wACI L Lk Y

A

1

N

i

> ~

[N

S L R}
TRy
(23

"y

S}

-

-

w4 giar 3
vdvdg el el

* o ® o & g o

w

&

ts

—

_

vt

—

1t

[

[Fs]

1

«

[T T
Tt
eopae

'

>

-~

[I
oo oy
IS s

Filgure 5

Analysis for a Simple Microprocessor Progran

it

fBiad

X s

19

This chapter explains how the suitability checker 1is incorporated
into the assembler. Although it is possible to quickly find jumps and
other types of instructions to count for the SF calculation, more
analysis is required to determine nested 1loops, Jjumps not associated
with loops, and number of instructions within loops. This is the
purpose of the loop analysis. After finding the types of instructions,
all of the loops must be checked to determine their construction. This
is a means of determining the relationships of all Jjumps according to
the three loop constructs defined in the previous chapter. Each jump is
first checked to see if it is already associated. If not, it is chezked
to find if it is forward or back. If back (2 loop), all forward jumps
are checked against it to see if any forward jumps go around the 1loop,
jump out of the loop, or jump into the loop. This information is used
to determine the loop class or any errors. On the other hand, if the
Jump being checked is forward, checks of all forward jumps and each
subsequent loop are made to see if it jumped around any 1lcops, if it
Jjumped around any other forward jumps, or if any forward jumps jumped
around it., In this way, the relationship of all jumps is determired and
analyzed for errors. Then the identifications for nested 1loops,
unassociated forward jumps, and instructions within 1lcops can be made.

The remainder of this chapter discusses in detail the algorithm
necessary to modify the main assembler program, modify the source list,
and add one subroutine to find loop numbers. This includes discussion
of common areas and variables, instruction scan, loop structure check,

nested loop check, SF calculation, jump analysis, showing the nodes of

20
LFPG, and subroutine FINDLP. See Appendix B for the assembler

modification instruction listing.

Common Areas and Variables

Two named commons, LOOP and INST, were added to the main program.
The array sizes chosen have proved workable, but could be increased if
desired. Common LOOP contains information about loops found in the
source program. It includes four variables. LPMAX is the total number
of loops. Array LP (100) is the loop table which contains the executable
instruction number of each loop's jump instruection. LPNO, loop number,
is the pointer to the loop array, LP (100). LODES is a pointer to the
loop table entry whose destination is currently the 1lowest during the
nest check. The other common, INST, contains information about
instructions. It has five variables. The array JPX (1€00,2), ‘or
jump/execution number, holds the jump number and executable instruction
number for each line of source code. The array JP (200,4), for jump
table, holds four data for each jump. That is: 1) the executable
instruction mumber of the jump, 2) the executable instruction number of
the destination, 3) the type of jump or class of 1loop, and 4) the
pointer to the associated loop. MSTCPN, for stop number, and MSTOPC,
for stop dot, are used in printing the source 1list to show the
destination and jump for each outside loop. LFPG is the node number of
the loop free program graph. The array JPDES (200), for jump
destination, is used only by the main program as a table of jump
destinations. It is not in a common. It holds the symbol table pointer

for each jump's destination. This is required, because the executable

L

=

21
instruction number of the forward jump's destination is not known until

the end of pass one. For a list of all variables, see Fig. 6.

Counters and Qther Variables
The suitability factor, SF, requires seven counters:
SF = ((NIO+NAL+NC+NB=NF)/(NX-NL)) - (NL/NX)

NIO is the number of input or output instructions (equivalent to FCRTRAN
reads and writes). NAL is the number of arithmetic and legical
instructions, MNC is the number of unconditional calls. B is the
number of loops (backward jumps). NF is the numbter of forward jumps not
associated with a locp plus the number of conditicnal calls. !X is the
total number of executable instructions. ML is the total number of
instructions contained in outside loops. llote that ¢this includes =zll
instructions in locps, but instructions in nested loops are not counted
more than once. By comparing these seven variables to Ramamcorthy's
formuula on page 7, the relationships may be noted. Six additionzl
variables are required to modify the program.

MJ is the jump table pointer to array JP (200,4). NJMAX is the
total number of jumps. KPTR is an additional symbol table pointer that
can be used to determine a label location without disturbing <the
original symbol table pointer, SMBPTR. X, the instruction type, is part
of the original assembler. It is used with the original ICODE, the
instruction op-code, to determine the variables for SF., See Appendix D
for explanation of op-code groupings. KDEST is used as the address of a
jump destination, so a label location can be noted without disturbing

the original symbol table pointer. The next section explains how all

these variables are used in the analysis.

oA

—z

VARIABLE
COMMON /LoCP/
| LPMAX
;r' LP(100)
'J LPNO
LODES
COMMON /INST/
JPX(1000,2)
JP(200,4)
MSTOPN
MSTOPD

LFPG

JPDES(200)
NJ

NIMAX
KPTR

SMBPTR

ICOoDE

KDEST

22

INITIALIZE
ADDITIONAL
VARIABLES

INITIAL USED

DESCRIPTION VALUE 3Y
TOTAL NUMBER OF LOOPS 0 PASS 1
LOOP TABLE 0's PASS 1
LOOP TABLE POINTER 0 S R FINDLP

LOOP TABLE POINTER TO LOW DESTINATION LPMAX PaSS 1

JUMP NO. & EXEC. NO. FOR EACH STATEMENT O's PASS 1

S R LSTOUT
JUMP TABLE 0's PASS 1
FLAG TC STOP LFPG NUMBERS X S R LsTOUT

FLAG TO STOP DOTS (LFPG NON NCDES) EX. MO. S R LSTOUT

OF OUTSIDE JUMP

LFPG NODE NUMBERS 0 S R LSTOUT
DESTINATION TABLE (SYMBOL PCINTERS) 0's PASS 1
JUMP TABLE POINTER 1 PASS 1
TOTAL NUMBER OF JUMPS NS-1 PASS 1

AUXILLIARY SYMBOL TABLE POINTER CURRENT PASS 1
S. T. POINTER

ORIGINAL SYMBOL TABLE POINTER 0 PASS 1
ORIGINAL INTEL INSTRUCTION TYPE 0 PASS 1
ORIGINAL OP-CODE TABLE PASS 1
AUXILLIARY DESTINATION ADDRESS CURRENT PASS 1
DESTINATION
Figure 6

Variable Initialization

.

23

Instruction Scan
The original assembler program is altered so that the scanner
(program label 500) checks each source line after the assembler finishes
and before the next source line is read. See Fig. 7. The scanner
checks the op-code, ICODE, which is already aveilable to determine the
instruction type for SF calculation. For the INTEL 8080 language it. was
found convenient to check op-codes because of the way they are grouped.
See Appendix D. The type of instruction can be determined by checking
within a range.of op-codes, If it is a jump, note jump tyre as follcws:
1. Type 1 is conditional backward;
2. Type 2 is unconditional backward;
2. Type 6 is conditional forward;
4. Type 8 is unconditional forward.
Forward jumps are distinguished from backward jumps by the fact that
only backward jumps have a destination defined prior to their encounter
oy the scanner. Tnis is determined by checking the symbol table. ir
the destination is undefined, either the jump is forward or there is an
error. Based on this, construct the initial jump table in array JP.
This includes the jump's execution number, destination if backward or
KDEST if forward, and jump type. Backward jumps only (loops) are
associated with themselves. Continue by counting executable
instructions, but comments and pseudo op's are not counted. Then return
to the assembler to read the next source line at program label 1. it
the end of pass one, signified by the END pseudo op, find the executable

instruction number of the destination for all forward jumps. See Fig.

L

FOUR ENTRY POINTS TO INSTRUCTICN
CHECK FROM THE ASSEMBLER, WHERE ‘::’

IT FOUND EXECUTABLE INSTRUCTIONS.

500
OTHER
TYPES FWD
NOT OR BACK?
USED
*CR
SF
530
550 COUNT EXEC
INSTR MX
GO TO ASSEMBLER FCR NEXT
SOURCE LINE
Figure 7

Flowchart for Instruction Scanner

TS R TR WL

25

8. Prior to pass two, check loop constructs, find nested loops, and do

the jump analysis.

Checking Loop Constructs

This discussion is supplemented with flowcharts throughout the
following pages. Also the reader may wish to refer to Appendix 8. A1l
program labels and format statements refer to the program listing of
assembler modifications in Appendix B.

Loop constructs must be checked to classify loops and .find any
structural errors as well as to associate all possible jumps. This
process is called DO 590 in the program. See Fig. 9. The index is MC.
Note that since it 1s desirable to check backwards, the index is
manipulated to do this and the reverse index is MJ. First, in the jump
table, check if the jump is already associatedﬂ If it is, go <o 590,
because that means it has already been checked. I not, branch
depending on whethef the jump is forward or back.

If the jump checked by DO 590 is backward signifying a loop, go %o
label 562, the start of DO loop 574. This is shown in Fig. Q9. All
forward jumps are checked against the loop for possible association with
it. To be associated, a jump must start in the loop. If it does start
in the loop, there are two possibilities. If the Jjump stays ir the
loop, it is not significant to the structural classification unless it
jumps around another unconditional jump out. If a jump does exit the
loop, it is associated, and the loop is checked for entry and exit.

This is done by checking all previous jumps out to make sure one is not

unconditional. This could preclude entry to the loop. If such an

26

ENTRY POINT FOR INITIAL JUMP

CHECK FROM "END" PSEUDO OP

554

SAVE NO.

OF

JUMPS & LOOPS
NJMAX LPMAX

AT END OF ASSEMBLER PASS ONE.

DO 557

Jc

FIND EXECUTABLE INSTRUCTION NUMBER

OF FORWARD JUMP DESTINATICNS .,

DO 555

Js

557 CONT.

see
ig 9

CHECK ALL SYMBCLS TO MATCH
UNKNOWN DESTINATICNS

| PUT DEST. IN
JUMP TABLE

Figure 8

Flowchart for Finding Forward Jump Destinations

CHECK NEXT FCRWARD JUMP.

(DC 590 MJ)| ANALYZE LOOP STRUCTURE BY ASSOCIATING ALL
CHECK THROUGH
JUMP TABLE POSSIBLE FORWARD JUMPS WITH LOOPS. LOCK FCR

BACKWARDS MINIMUM STRUCTURAL REQUIREMENTS. CLASSIFY.

CHECK NEXT JUMP.

CHECK FCRWARD JUMP.

NEITHER

CHECK NEXT JUMP.
UNCLASS

562 DO 574 NF1)| CHECK FORWARD JUMPS (NF1) TO ASSOCIATE THEM
EU%KT%UGH THEM WITH LOOPS (MJ) IF THE FCRWARD JUMES

BACKWARDS ORIGIYATE IN THE LOCP.

NOTE
9903
JUMP IN

ALREADY ASSCC?

Figure 9

Flowchart for Checking Loop Constructs

28
SET ENTRY
FLAG KFE
SET EXIT
FLAG KFO

|

DO 570 N6)| oumECK ALL PREVIOUS FORWARD JUMPS
CHECK THROUGH

JUMP TABLE TO DETERMINE ENTRY AND EXIT.
BACKWARDS

CHECK EXIT.

CHECK NEXT FORWARD JUMP.

FLAG KFE

CHECK NEXT FORWARD JUMP.

ASSOC IN
JUMP TABLE

[NOTE 1IN
JUMP TABLE

]

Figure 9 (continued)

Flowchart for Checking Loop Constructs

566

29

ERROR

9902
NO ENTRY

FLAG KIFE

[RESET ENTRY |

574 CONT.

ERROR
9001
NO EXIT

CHECK NEXT JUMP.

576 DO 577 NFS)
CHECK THROUGH
JUMP TAZBLE
BACKWARDS

CHECK ALL SUBSEQUENT LCOPS (NF8)
AGAINST THE FORWARD JUMP (MJ) TO SEE
IF MJ JUMPS AROUND NF8

Fig9
cont

Figure 9 (continued)

Flowchart for Checking Loop Constructs

30

unconditional jump out 1is found, a further search 1is made for 2

conditional forward jump around it. This complex construct identifies =z
Class 3 loop as shown on the second page of Fig. 9 and in Fig. 2.

Each exit is also checked to see if it is already associzated. If
it is, this implies the presence of nested or overlapped locps, because

one jump exits at least two 1locps from the same point. Multiple

associations are noted, because the jump table permits only one
association to be stored for each jump. The loop class is also stored
in the jump tatle. Entry and exit errors, 1if any, are noted Gefore

checking the next jump in DO loop 590. This process of checking lccps

is shown in the first three pages of Fig. 9.

The last two pages of Fig. 9 show the process for checking forward
Jumps identified by DO loop 590. For this case, all subsequent loops
and previous forward Jjumps must be investigated to determine
relationships with the forward jump. If the forward jump gces around 2
loop, a negative association is made with the locp to show this in the
output. Such a forward jump is still counted as unassociated in the SF,
if it is not part of any other loop. If the forward Jjump gces around
ancther jump, there zre two possibilities. If the Jjump around is
conditional, it is simply noted. B8ut if it is unconditional, it is

noted as a possible error, because it could preclude the other Jump from

D ey

being executed. This is a useless situation zand a logical error. If,

o Sy e 6T R gy T e o wapere- e T—— e m e e o — o

at the end of DO loop 577, the forward jump is not associated at all, it

is associated with itself to show that it is an isolated forward Jjump.

This is the end of DO loop 590, the loop construct check. Using the

i 4

| 3

CHECK NEXT LOOP (NF8).

CHECK NEXT LOOP (NF8).

NOTE

9990
ALSC JUMP
AROUND

NOTE 9994

ASSOC MJ
WITH -NF8
r L
577 CONT.
-
D0 584 NCU) CHECK PREVIOUS FORWARD JUMPS (NCU)

CHECK THROUGH{ AGAINST FORWARD JUMP (MJ) TO SEE IF

1
%lcm;;wrisglsE NCU JUMPS AROUND MJ.

CHECK VEXT FCRWARD JUMP,

CHECK JEXT FORWARD JUMP.

Figure 9 (continued)

Flowchart for Checking Loop Constructs :

32

Irom

g %

ALREADYN. Y [NOTE 9990

ASSOC? ALSO JUMP i
AROUND :
N
ASSOC NCU THIS PSUEDO ASSCCIATION FOR OUTPUT CNLY.
WITH -MJ STILL COUNTED AS UNASSCCIATED, UNLESS ;

ASSOCIATED WITH ANOTHER LOOP. :

CHECK NEXT FCRWARD JUMP.

UNCONDITIONAL JUMP AROUND FORWARD JUMP.

584 CONT.
MJ N | ASsCC WITH SAME PSUEDO ASSOCIATION
ASSOC? ‘ MJ AS ABCVE.
Y
590 CONT

Figure 9 (continued)

Flowchart for Checking Loop Constructs

33

informatior gained here, it is now possible to make a positive check for

nested loops.

Nest Check

The purpose of the nest check is to find nested lcops and
overlapped locps. See Fig. 10. This is done by using the loop table as
a pointer to check through the jump table backwards. Sach loop is
checked against the previcus loop and the outermost loop. The objective
is to seeAif the range of executable instruction numbers for the
previcus loop is a subset (nested) of the others or an intersecting set
(overlapped) of the others. This checking process is done in a lcop
called DO 588 as shown in Fig. 11. XC is the loop index which points to
the loop currently being checked, LODES points to the loop having the
lowest numerical destination of those already checked {(the outer lcop).
To start the check, the last loop is designated the outer one, because
there can be no subsequent loop to contain it. During the check there
are four possible situations. The previous loop may rnot be nested. The
previous loop may be overlapped with the current 1locp. The previcus
loop may be nested in the current loop. Or, the previcus lccp may te
nested in the outer loop, LODES. For each of these situations, a
message is shown except for the case when a loop is not nested. If the
nests were checked ccmpletely to the inner locp for each iteration of CC
loop 588, the process could become very complex. To avoid this, the
current loop, KC, is checked only against the previcus loop and the
outermost one. This requires checking each current loop to see if it is

the new LCDES, but this is much simpler than trying to track a nest down

T

34
SEQUENTTAL LOOPS:

Task two comes after task one.

TASK 1 Tasks are distinct. They can
be shown as separate nodes on
TASK 2 the loop free program graph.

OVERLAPPED LCOPS:

NOT NESTED Tasks one and NESTED
two are not
TASK 1 distinct Ybut
Vi | /
converging.
They cannot be TASK 1
TaSK 2 shown as two TASK 2 L/
separate nodes TASK 3 K_‘//
CANNOT BE ANALYZED on the LFFG. CAN BE ANALYZED
(ALL TASKS CONSIDERED
PART OF TASK THREE).
NESTED 1OOPS:

Tasks one and two are converged.
TASK 1

Together they are shown as a
TASK 2

single node on the LFEG.

Figure 10

Task Convergence and Overlapped Loops

e

e Sadeien mA e

e T 2 e e

35

from

Fig

LODES = LPMAX FLAG LAST LOOP AS QUTSIDE,

|

LP(LODES)= -IPACDES)] FLAG OUTSIDE LOOP WITH MINUS SIGN,

‘ I

‘ (D0 588 KC)
CHECK THROUGH CHECK FINAL JUMP TABLE
I00OP TABLE
BACKWARDS TO FIND NESTED LOOPS.

FIRST LCOP IN PROGRAM?

PREVIOUS LOCP NESTED
IN CURRENT LOOP?

IS CURRENT LCCP
THE NEW OUTER LCOP?

PREVICUS LCCP NESTED
IN OUTER LOOP?

PREVICUS LCOP CVERLAPFED
WITH CURRENT LCOP?

CHECK IF KC IS NEW LODES.
ig 10
cont

Figure 11

Flowchart for Nest Check

%

!

9982 j

1 NESTED]

587 CONT. %

Y “

3

i N
85 cor. e FLAG OUTSIDE| STCRE CUTSIDE LOCES AS
L 5 YU WITH AS NEGATIVE TO IDENTIFY
MINUS SIGN FCR LFPG.

T T T

Figure 11 (continued)

Flowchart for Nest Check

37

to its innermost loop in a single iteration of DO 1locp 588. Outside
loops, regardless of whether they contain nested loops, are flagged for
later use with the LFPG. This concludes the discussion of the nest

check.

Final Checl

Three final checks are necessary to calculate SF. Check the final
Jjump table first for forward jumps with no positive association.
Increment NF for each of these isclated forward jumps. Mext find L,
the total number of instructiors in locps, by subtracting the executatle
instruction number of the destination from that c¢f the jump. Trnis
result for each outside loop is added to find !L. This is not done for
nested loops. Otherwise, NL could be larger than NX, the total number
of instructions. This would cause SF to be negative. Alsc, !B must ©e
discounted for each nested loop to show the number of cutsice locps
only. Prior to the SF calculation, check if X = !L. Ir this case,
show the unsuitability for parallel processing (format 2010).
Otherwise, SF is calculated and output with the jump table. These three

checks are shown in Fig. 12.

Jump Analysis
The Jjump analysis checks conly forward jumps to find thcse
unconditional ones which circumvent other instructions. This is dore by
trying to find another forward jump to the next instruction. If such a
path cannot be found, a search is made for a loop back to that next
instruction after the unconditional forward jump. If no path is found,

a possible error message (format S493) is shown. lote that in programs

‘from
ig 10

(D0 591 ICNT)
CHECK THROUGH
JUMP TABLE

+ ASSOC?

Y

&

FIND TOTAL NUMBER CF FCRWARD JUMPS
NOT ASSCCIATED WITH LOCPS, NF.

| CCUNT NF

ol

591 CONT.

!

(D0 595 NCND
CHECK THRCUGH
LCOP TABLE

1

COUNT NL

1

DISCOUNT NB

|

595 CONT.

]

FICAT S F
VARTABLES

FCR CALC

COUNT INSTRUCTIONS IN QUTSIDE LCCPS, NL.

DISCOUNT NESTED LOOPS FROM TOTAL LOOP COUNT.

CAIC S F

Figure 12

Flowchart for Final Checks and Jump Analysis

39

LIST FACTCR VARIABLES AXD JUMP TA3LE
1OCP NO., JUMP NO., TO, JLA3S, A3SCC.

(DO 597 IC)
OUTPUT

JUMP TABIE
DIAGNOSTICS

{OTE
G490
NOT ASSOC

USING THE JUMP TABLE, SHOW A LIST CF
JUMPS, TO, FROM, CLASS, AND ASSOCIATED
JUMPS IF ANY,

Figure 12 (continued)

Flowchart for Final Checks and Jump Analysis

-—

L M R

nn
hna ¥

which have vectoring (jump to an address that jumps to ancother adcéress
or has its own return nechanism), ¢this will cause errcrecus error
messages, because the return is obscure. At label 5264 ncte jumps not
associated with any lccp. At label 597, the end of the jump analysis,
write the headers for listing the locps. Then find and list each locp
with its associated forward jumps, if any. If there are none, It will

so indicate. This is the end of the jump analysis as shown in Fig. 12

¢cn the previcus page.

Free Progran Grap

The key to the Loop Free Program Grach (LFPG) is <the locp table
which has the outer loops tagged as negative by the nest check. Tris is
used in the present version to print a notation on the scurce 1ist
showing the node numbers of the LFPG and non noges as dots in 2 column
between the jump number and the executable instruction number. Tnis was
shown in Fig. 5. This is done by subroutine LSTCUT at the same time it
is making the source list. This capability is initialized by the meain
assembler program by setting MSTOPN to the number of the 1last loop in
the jump table. MSTOPN is the flag that suppresses the LFPG rode
numbers within outside loops on the listing. When subroutine LSTCUT is
called, the assembler pass two has been modified to determine if there
are any loops. If there are none, it perfcrms ncrmally. If there are
loops it sets a flag, MSTOPN. This will stop printing numbers and start
printing dots at the beginning (destination label) of the outer locp.

It also sets MSTOPD to stop printing dots at the end (jump) cf <that

loop. See Fig. 13 and Appendix B.

A Rt W o ey 7o ts e s A e s

41
IXISTING SUBROUTINE LSTCUT WRITES QZJECT CCDE FCR LCADER AND SCURCE CCDE]
FOR ASSEMBLY LISTING. 1IT IS CALLED FRCM PASS TWOC FCR EACH SCURCE 1
PROGRAM LINE.

LPX = LPMAX-1 INITIALIZE LCOP LIMIT

CHANGE OUTPUT LISTING TO SHOW LFPG NCDES AFTER NEXT OUTPUT LINE FCUND.

NCTE: LABELS 100 70 300 ARE
SHCWN IN THE CONTINUED FIGURE

CN THE FOLLOWING PAGE.

OUTSIDE
LOCP?

RESTCORE
LOOP TABLE 200
TO POSITIVE
JALUE.
Fig 13
cont
Figure 13

Flowchart for Subroutine LSTCUT Modification i

75

100

300

400

SET UP FOR

NEXT OUTER
LOOP

SUB NCDE

CCMMENT
LINE

RESTORE LCOP TABLE ENTRIE3 TO POSITIVE
RESET STOP FLAGS, MSTCPN AND MSTCPD.

WRITE A DCT IN PLACE OF LFPG NUMBER.

WRITE THE LFPG NUMBER WITH USUAL CUTFUT.

WRITE NOTHING EZXTRA WITH THE CCOMMENT.
(AL30 HANDLES PSEUDC OFS).

! . . . CONTINUE WITH CRIGINAL
SUBROUTINE TO WRITE CRJECT LOAD MCDULE.
N
L

Figure 13 (continued)

lowchart for Subroutire LSTOUT Modification

A R Bt TN B Tyt g e e e v e e a.

43
The subroutine LSTCUT has been modified by addirng the CCMMCHNS INST

and LOOP. A variable LPX is initialized to point &t <the last 1lcop,
because it limits the loop index used to find the rext outside loop. It
checks while making the source list for comment lines or pseudo op's.
Nothing extra is printed on these lines, because they have no
significance for the LFPG. The node number is printed on the 1line if

£ not zand the

A

the executable instruction number is less than MSTCPN.
line is part of a2 loop, a dot is printed. Else it is the backward jump,
for an outer loop so the node number will te oprinted, and the flags are
reset. This contirues until the last executable instruction which must
always be a node by definition.

The subroutine FINDLP has been added to find loop numbers from the
loop table when given a jump number passed in the call., See
Aprendix E. This is necessary to crovide ccmprehensive diagnostics <hat
reference both the jump and the locp numbers.

Tnis completes the discussion of the algoritnms implementing the

LFPG. The

suitability checker, finding nested loops, and printing the LFPGC. el

Iy

next chapter discusses the interpretation of <the suitabilit

-3

determination and the disgnostics.

S o e

i

TR P e e e b s <o

>

-

B

SUBROUTINE FINDS LCOP NUMBER CF BACKWARD JUMP, I,

FINDLP (I)
FROM LCOP TABLE., RETURNS LPNO IN CCMMCON AOCE/

INITTIALIZE
LPNO=0

(DO 100 IC¥D Y pInp MATCH CN JUMP NUMBER, I, 3Y CHECKIMN
CHECK THROUGH]
LCOP TABIE LCOP TABLE ENTRIES.

| LPNC = LCINIL1 RETURN
WARNING
39000 LOOP NUMRER NCT FOUND.
NOT FCUND
(RETURN ’
Figure 14

Flowchart for Subroutine FINDLP

CeweI AR L T T W et g — o oo e e o o e

IV. SUITABILITY FACTOR AND DIAGNOSTIC MESSAGES

This chapter discusses interpretation of the suitability factor,
SF, and the error messages, warnings, and notes which are a useful

ty-product of the analysis.

U {11ty Tace
though SF is partly an empirical facter, it can be <“heorticalliy

Justified as discussed by Ramamoorthy [1]. He discussed the value of 3¢

Q.

= 0.3 as being a useful cutoff point. According to his observation an
reasoning, a value greater than (.3 indicates that a program nas
characteristics favorable for parallel processability. Trerefore, the
same value has been used as noted in the output. Surther research may
irndicate a different value for the assembly language suitability checker
because of two differences between this application and Remamcorthy's.
These differences concern loops.

Since Ramamoorthy wes interested in dynamic schecduling, he incluced
backward jumps of unknown iteration as a negative contributing <factor.
With assembly language, the predetermination of lcop iterations cannct
be made at this stage of analysis. Therefore, the assumption was made
that all the 1loops are designed for a predetermined number of
iterations. For one time scheduling of the program in the
multi-microprocessor system, each partition will be scheduled to run on

a processor until it is finished. For this reason, the schedule will be

45

R VT g

46
based on earliest and latest possible task initiation times only; not
dynamically based on how long the partition will take to execute. Cf
course, the execution time must be rezsonably balanced with other
partitions, but this is the indication given by the suitability factor.
This is reasonable for nondvnamic scheduling, because the final sclution
Qv ‘ will eventually require some balancing or fine <tuning. This would
involve consideration of loops of indefinite iterations such as 1locp

3 until interrupt. Eased on the overall system, a decision wculd be made

whether to allocate such a loop as a discrete task or part of a larger H

set of tasks. With respect to nested loops, this is 2 ncre complex

croblem.

Since Ramamoorthy's analysis dces not allow nested loops and does
not recognize loops of unkncwn duration, it really does nct consider
loop length except for the caveat that parallel .paths must not be tco
long [11]. This is checked by referencing the number of instructions in
loops. HNesting effectively increases the loop length as shown in Fig.
15. Because optimal length is relative to the 1length of other
partitions, it is not possible at this stage of znalysis to judge this.
The number of instructions in the loop is only a rough indication. A

short loop executed many times could run longer than a 1long loop

- e

executed only a few times. Therefore, it is necessary %o examine not

only loop length, but also iterations for the outer loops and any inner

loops. It is not possible at this stage to find what determines the
iteration of each loop and how many times it will execute without
additional analysis. Therefore, the formula is used as an approximate

value, One use envisioned for the multi-microprocessor machine is to do

, 4

47

LOOP LENGTH {j
- - - ACTUAL TASK LENGTH

3 MANY SHORT ITERATICNS

Janoloog)

" FEW LCNG ITERATIONS

|
ACTUAL TASK LENGTH CAN BE DETERMINED ONLY BY KNOWING ITERATIONS.

Figure 15

Length of Nested Loops

=

48

experimental program executions to find the best possible schedule or
processor allocation. When this is found, the program would be
considered ready to run on a production basis. One further comment 1is
necessary.

Although it is not highly significant here to study the bounds on
SF, it should be noted that it is usually positive. But it cannot be
thought of as a positive number between zero and one. It approaches
infinity as the number of instructions in loops approaches the total
number of executable instructions. This 1is an undesirable situation
indicating loops that are too long.. Further research will be helpful in
interpreting this factor <for &assembly language programs. For the
remainder of this chapter all FORTRAN format statement labels referenced

are shown in Appendix 8. They were also shown in Figs. 7 through 14,

Possible errors noted by the analysis are conditions which may be
due to faulty logic in the loop or jump structure of the source program.
They could cause problems in execution. They are explained here in
order of the format label number. tatement 9001,"NO EXIT FRCM GZACK
JUMP, UNLESS B8Y RETURN OR OVERLAPPING LCOP," means an endless 1lcop.
Analysis of several programs showed that this is not unusual for
microprocessor systems, because they are often designed to run a pregram
over and over. Therefore, this is shown as a possible error. Statement
9902, "NO ENTRY TO LOOP, UNLESS BY RETURN FROM JUMP OUT," means that the
loop will not be executed. This indicates a backward jump that appears

to have been circumvented by a previous jump. This message may be

49

generated erronecusly by jumps to another part of memory that has a
return mechanism that is not discernable by the analysis.

Statement 9493, "NO PATH TO INSTRUCTION EXCEPT BY CALL," means
there is at least one instruction which will not be executed because of
a previous unconditional jump. This message may be generated
erroneously by some programs that include vectoring or some sequence of
unconditional jumps with no apparent return.

Statement 9993, "UNCONDITIONAL FORWARD JUMP ARCUND FORWARD JUMP,"
is nearly the same as 9493 and in some cases confirms it. 9493 is
generated during the instruction scan, and 9993 is generated by checking

the jump table to confirm that there is no apparent path.

YWarnings Made by the Analysis

Warnings are for conditions that have occurred during the analysis
that will cause the results to be incorrect. With one exception these
should not occur unless the source program size limits have been
exceeded. These warnings are discussed in the order of the format
statement numbers.

Statement 900G, "LOCP NUMBER FOR BACK JUMP NOT FOUND," means the
loop was not recognized and stored in the loop table. This error should
not occur unless accompanied by 9991 or 9996. If it does occur alone,
it means there is a fault in the analysis program.

Statement 9991, "ARRAY LP OVERFILLED MCRE THAN 10C LCOPS." This is
self explanatory and means the array must be enlarged to accomodate the

subject program.

50
Statement 9996, "ARRAY JP OVERFILLED MORE THAN 200 JUMPS."™ This Is
self explanatory and means the array must be enlarged to accomodate tne
subject program.
Statement 9980, "LOOP CVERLAPPED., SF VALUE MAY NCT GE MEANINGFUL."
This means that two loops are overlapped. A loop jumps out of a
subsequent loop which jumps back into the former one as was shown in
Fig. 10. Unless these two loops are both nested in a third loop the
LFPG will be in error. The analysis could not accomodate two nodes
which partially converge or are not discrete and distinct. If the
overlapped loops are nested in another, all three will be treated as cne
task for partitioning, and the overlap will be inconsequential. nis
version of the program does not make this determination, so all
overlapped loops generate the warning.
Statement 9999, "UNCLASSIFIED JUMB," means the jump type or loop
class was not established. It indicates an array problem or fundamental

error in the suitability checker. This error should not occur.

" Made by the Analvsi
Notes are for conditions discovered in the source program that are
not necessarily wrong but considered essential to emphasize. They may
indicate a problem, but will be informative in any case. They are dis-
cussed in order of the format statement number as shown in Appendix 8.
Statement 9490, "FWD JUMP IS NOT ASSOCIATED WITH ANY LOOP," means
an isolated forward jump. These are detrimental to parallel processing,

especially if conditional.

T SO

A S

51
Statement 9903, "CONDITIONAL FWD JUMP ENTERS BRACK JUMP FROM CUTSIDE
ITS RANGE."™ This could be an error, or it may simply be a way of
entering a loop.
Statement 9990, "JUMP ALSO JUMPED ARCUND JUMP," This indicates
that a forward jump went around another jump subsequent to the one shown

in the jump table. It is not necessarily a problem. It supplements the

jump analysis, because the association can only be stored for one jump.

Statement 9994, "FWD JUMP ARCUND BACK JUMP." Tnis shows a jump {

around a loop. It may indicate a problem, if there is no other path to
the loop. This is a precautionary note, because all information was not
available at the time to make an urqualified error identification. . ?
Statement 9995, "CONDITIONAL FWD JUMP IN EBACK JUMP, B3UT IS MNOT é
i SIGHIFICANT TO ITS STRUCTURAL CLASSIFICATION.M This indicates an
interior jump has been found that is not a minimum requirement of lcop Vo
structure for classification purposes.

Statement 9997, "FCRWARD JUMP ALSO ASSOCIATED WITE JUMP.™ This
indicates a jump out of an inner loop of nested locps. According to the
analysis it would be associated with =211 loops it jumps cut of.
However, only one association can be made in the jump table.

This concludes discussion of the available diagnostic Ffacters,
errors, warnings, and notes. An example program listing showing some of

them is included in Fig. 17 in Chapter V, which discusses actual

experimental results.

Eaimanrd o i SEIE

V. EXPERIMENTAL RESULTS

This chapter shows actual results achieved by using the suitability
checker on ten microprocessor programs. The first section discusses
these results and the second section explains the output of a sample

program run.

Findi

Eight actual INTEL 8080 programs and two pseudo programs (two test
cases written for this research) were analyzed for parallel processing
suitability. The results of applying the suitability checker to these
programs are shown in Fig 16. Probably the most significant finding was
that most of the programs were suitable except those containing
overlapped loops which were not nested ir another 1loop. The one
program, NCNDIGIT, which was unsuitable, because of its long outside
loop structure, was found to be highly suitable when the outer loop was
removed. In one other case, TEST P2411, when the outer loop was
removed, this exposed overlapped loops rendering the program unsuitable
in that context. Programs containing exposed overlapped loops are shown
with an asterisk.

Also the results are shown in parenthesis for an earlier version
that neglected to discount nested loops from the loop count. Although
this did make a difference, it was almost negligible for the programs

tested.

52

e

$7TNSOY TeusWTIadxT

gL ound1y
pa3uNodSIp J0u sdooT pajsau () posowdd dool J99no JT ATUO paunsesuw aq pInoo 4S < >
panowadd dooy JoIno [] eyep ou gy sdoo1 padde1aono posodxd i
96 €9 8 el 0 Ik 0 mw.o Sd00T d3LSIN
(9L) (£8°0) 404 IASYD 1S4l Liied LSAL
Hm: [LL] (] *So o:
l gL 0 L 0 L 50") NOILINDOJAY 4007)
(L) (G0°EL) 404 ASYD IS4l LS3Ld007]
ANTHOVW
<gée> <g0eS> <L <> <g6°2> ONIQVAY W4
tce tce 0 { Gl] bl ¥ 404 ¥3TIOHLNOD LIDTQANON
A , SNYALLVA OTHIWNN
tLl €S h w Sh 119 0 MM.O ONIQVIYd R ONILIUM
(G) ‘0 X8 XUOW3W MOIHD JIHINSAKW
JILSONOVIA
onl 9l, G h 61 8t X %970 KHOWIW JJHIKW
06 lh 6 4 fl 91 8 g1°0 HIayo1
(9) (9¢°0) VLvd WiId 43avon
S8 9¢ l 61 0¢ 0 c9:0 SYIWAN XdH 08 ;
Amv (99°0) LI9Id t SLNdNI z:mmm: i
628 Olh cc 9c 1z gLl 0 x0t°0 JOVAOVd "HLIHV
LNIOd ONILVO'1d oMddd
col 65 l € 61 3 0 x£9°0 SNOILYI01 @AI4I1J3dS {
OML NAdML3I4
3 %(59°0) KHOWIN dWnd dhind
nzmm N LI9Id
ti L 0 l 0 3] 0 6L OML dav ceaav

Mg Sd00°] 2071 JWYN

HLSNT SdOOT NI dWAL g
JOSSVNN HALNO STV HLITYY 0/1 as asodiund WV O0Ud

TYLOL HISNI

54

It is significant that the checker can be used for parts of
programs. Although assembler errors will be generated, the analysis
Wwill still be completed. The next secticn tells about the results shown

on the program listing.

Explanation of a Sample Program Output

This discussion deals with the listing shown in Fig. 17. The
entire figure is nine pages. The format of this output is the Jump
analysis followed by the INTEL 8080 source program listing and symbol
table. The Jjump analysis was output first, because it reveals
information about the source list. The source list must be referenced,
nowever, to use the analysis. This reference is made through the jump
numbers which are shown in the jump table and on the source list under
the column label, JUMP. See Fig. 17 (cont.) on the fourth page. Both
Jjump numbers and loop numbers are given in the analysis.

The analysis format begins with the errors, notes, and warnings
generated by the loop construct analysis. This particular exzmple had
no warnings, mainly because there were no overlapped loops. This part
is followed by nesting information from the nest check. Then the
suitability factor is shown, which is 0.35 in this example. The values
of variables used to calculate SF are shown over the ¢tcp of the jump
table. See Fig. 17.

The jump table format is the same as explained previously for array
JP. The loop numbers for backward jumps have been added to the left
side. They are followed from left to right by the jump number, its
executable instruction number (both shown on the source 1list), the

executable instruction number of the destination, the forward jump type

TunT

¥ rw

-= INTIL -
SrSTTEL 27
JRLISTS gy 2
e LOHT T un
ST TS v
. LTurn W
397 IS NCTY
dng3Te =
UMLISS Ay

. FAN guwe
o« FAT Jve
« AT Jimo
o TaT guUME
o LOTO c
. LO7P i
A2TLITY Fug
Uy LUy R
R R ¢ Nio

)

4

"

>
zrasxx

-
sryreasn

7
2ranne
q -
3 «
sxsxesn
P P
- A -
-) .
-0 A
et e
s xxsnn

L1502 guMp £D

‘n IRINE REVEERSY))Y an 8N

”m

L

A EE)

5

vy

7

“

2

A

FX XY

s

b}

PR ¥ X1

“

sras

" 4
.

- pY

Py

& 1

-~ -

' PS

3 bt

xse

HE

J
-
z

I
[3

[X NE RN
=a
rreass
T

., : .
ssysssrrUEE

EYRPUIel}
”
«
x
-
x
]
2
«
«
2
”
x

W
U]’

Ta
=l
X

—

Ie
A
~“~x -
[.
A» NS WV

T Ow

v
‘al

(A
[3a]

o 0D
v
1

-
vy Q9

0
no

7]

(o4}

rrravns

BESxE2N

LR

r) &

[}
-
ro

-
<
»

LR

Figure 17

VER 2,03, 2101IT 77 -
OK JUwo =3 (L339 7
“cyIsLensEt (032,
“p TLSCR W,
TeunTeal ALasdrircaTy
MO LT (LOCP a),
TEUCTUSAL CL2SSIFISATS
CK JUvp 7 (L33P)
CVERL APPEY _CD2,
Juwe 7,
Juse 7,
Juvs 7,
JUmMp 7 e
CEISING IS .35,
AVGEIaLZ,
NL 'S
53 473

Sample Program Output

PP

TR TR, SO S A g Ty . wn e .

twTee Fnl Junr 2y zA NST< NUO. 157
) ’uT —ST)Q':.IZT:D W-.T"‘l Y LJ"FO
LoCOPS IV THLZ PROGRAM
Lo0F FoL TC SLASS
Jolt ¢ "6 . -}555' _ 2 B
FORAL) JIMPS ASSCCIATED wITw LOSP b
Jun? 1 24 I°ST= NCe o557
JUMP 2 Zx I0.STx NOe 001
oL e LiTs . v325 2
FU%AA-o JUMFZ ASSZCIATED wITw L9urf o
JUn4P 4 ZIx WST: NG. (07,
JuMP S5 BEx 103TX NJe lur7
4‘.\.‘3. . Jja" . ;JSL‘ 2
Flomma=<0 JUMI™S J3S5uue«TZD wiTr L3J0F N
NUNE
EVIVE 3113 121 b4
FUmAn-0 JUYFS AS52CIATZY ~lTr Lout “
ONT
o B _ a3 o Li92 B 2
Fusad-) JuMpPT LZ530CTaT2L +1IT= L3CF .
SLhE
=== ITEL 314 CRTo5 ASSEMILIrm === I~ 2470 e JIC T: ==-
L HACH Lot JJM= L=P6 EX NC LAdEL LT CREES LS
FERERNBEBRERERERT Tl MOSHCHIL FEERLEEELBLEIAEE LI IBRBRRE
*AIQTRACT - .
¥ - IHIE Fxl3aadM P<xCMFTS Tz uoz- T oz wTie Taw Sa’-3%
BOF ONUMSEE S g FI-GT PATR I3 1HZ 2331 veu'vi 30T 2nllo*
#2ID~ESSES oF w«Znl-Y TC 38 (HECKEIC, TH4Z SECSS.D FPlus o3 T-2#
FTAS tUMEE=S THWT Al ALTI NATZ o rlccate TXa-Y, IFTIN*
ARG VER 4 IS FLLLED,. THE F=o5irBd Alil Chcl< 1T Lewel o7 T-Z%
FELLL NUNZESS A0 JUTFUT ANy {IA5N337ICS. T9E . THE Twl . %
FUUACERS AE SAARPPED] AND THE SEGUINZE JF Fallo ey O ZC<4in:e®
FOND SHLAFFINO oS ~IPZaTIN LINTINUCUSLY, *
* ®
PCalLING SEQJENCE/PAAMETERSS -
* ¥
* PrRLG A PxcMPTSS SHTE~ (U1 LF 120y T, SE (0 20<I)*
¥ USEF rRES=CNISE AXRX g A XXX (xz=Hex 11350 7) *
¥ »
¥ FrComva® 2b04FTSE SHTE~ MNUAL U2 (TwWwe <L WUiegr S *
: USER 232,805 XK gX (x=Hge 271507) *
*
e Pm~uurat <E5P0NDSE DQJSNQST.CS *
¥ aodar 35S WM MErCaY *
. AXX X (X) *
Ry N Y Y N N R N N P S e

Figure 17 (continued)

Sample Program Output

]
] \'d < o) rJ [} (S
EATEE J - (3 — [[- -
o A) b { —t) f hy [Ze 2NN = R4 (ol Y] . te ‘D NMe
~ > LI T '— 1hen) Y + 0t + 4 +) 4. - I 0y 3y
C SR AR Y LU 3. [- 37> BTN | “+ > [IR RN ty 22y D= - e -
[P T “ -J L 'tn 0T < PO Jo s R S N) LT T 4 UG B | AR S AU S S
"Wl 1l - ~- [0 W LS I e« wr) e« DR Sie Ko 1ab I S Rl TEN TS FEF RN B 2 | P TS N —~ - "] =D » »ii)
LSRN § e o YD ER D] [R U TR TaTE AT 10T)T TN T TT OT LI e T Y R I RS T | G Y18 s
- [
-t 4 '))]) . J p]) 3) 30 -] 3 H
"o RO R (] [T T I S S L B S R I | | WP B T PR SR TN O A SR PR PR I |) ' N T TAT TS I |
Lo o ™ > T e A 120 X oA T™eq owoeq (RN IRV FYRSTEEE S N AR 8 A e P W Ty Y >y ™Y g ST
LA Y N Y | PR 33 Al %oy 1y N oy 2oy 4oty i PR | [ST A L] S IO S I S
? T b) o4
A 1 8] i N
- 3 v
o~y [4 -1
J — y 4) -
it b4 (] -r
Tt 0 (% 4 "N T —~ +
~~ T o+ RS (83 > [o 3
SRS S S - ¢ 1 % ,..W
] T [‘il o =
t [$) - ot (@]
] L 1) (8 +
M —Ad [T T REST TY TEEOS LI RS AR AR ISR AV] T % SITRYY G f SR AN IS DRVE L] E BFRRRe] o O ved U g™ D e U = m
' ~ed R R PR L R R R NFAVES T sURE oV E N ERN TN CICIMIM MDD o
[PYRRRY N T > A mv
w SR ted 5 [4a]
» 14 — V4 n o~ “w.;.
= L > I > (] L)
LIT I | Dl | D z o)
o 1) O ngin VU OV T e U tanadipe oY 40N 3y O AN g4 M) N D DT —
u e v R I R e R X IR EE TR R IS 1SR L N SN L W 1oV 2V | LSRRV T 0 2% (AP PGP u o
1 3 <t D 1 = o o ﬂ
[} 5 -1 Fa)
1 ”y u. B) e 2
AN EY 1 ’— v}
> ¥ 1) .
) . - it 4 R
P A 1 (& Pad
u <4 w
» L h] o
o) - P - P
™ Caed L adedvd) N FERAVE - RS SRR AN TR IR RN BN E SRR KV I PRV AT I AN BN o VAV R T oV BN RIS EC B B | N 14 -t
0 D 2. ™ 2y Z L 2RI TR T) €3 i3 o Iryrden 3y 32 Y 3 2 30 X LERT SA 3 3 w3 O
[[«<1 o &)]
- " y U =037 PN) N DR AN MONM NIy Yy owidu ¥ 2o et an
U T Iy 0L) ML d oL [SCTEC IRRRINTRS TR ROAY SR TAVRINIR bRV IR NEN IR Y AN TS VN + STV 3 PN Qe 23204 1 2L
- v 4 - =
PR ¢ ~D) OO0 A0 3 g A0 L AN S GN Q1M d W O IO (XD e imIvaiaE o iVe fap]
T MO = O’ = AT D e M0 IMMNOMINNIOMN G0 1= OO0 .ﬂ OO IV)
et D o~ —y hy
] . w Pad L L
] LA N D) £ W00 WO -1 W M oGy I DTl 1 K9 S0 S+ 2 DoOONe
] VRS | t X 0 N S 1IN N) [S XS e RN e I TN ¢ KR QL 0 0 S o K. S a T o TNt M 1Tl T
Y « . Yy MUIEE R S Y = 4 LERR IO RN O L T v Yo LI L) (RO I R A LY 8

% (sd Do % ¥ D73 6 F 00T v T B 3 D0 0y 0 3 30 T 0 T Y g sk s T v R YD T Il

- ———
R SR S e e ot
e B R S,

L] -
T T T M A A MR T o . i A e e ¢ e~ e
4 g e R

!
) (X
¥ B 1Y} .40y - [
o) + - ¥ - A *
AN] wd 7 ~ ¢ oy]
~ LT F.t1) b TY |) 1 (T2 ‘v 4 i ¢
-1 P Ran g~ IR] [V 25 ¥ ¥ Toe ot s (b LY} [T] 1 Y] [e~) = %
2 3 < sl e " L.] I U0 Bl BN S AN Ual LEFTES W oo 2y 174 L T NVIVY PR V0 | GVRE O
LA ¥) e D D eD D) [el Y ety g -1 - 17 2 Nl - e I e s I T G
LIS =X Y. Ty ™ b VYT T b LY B gl L VYIS GRS B | T e T it T LT T)
. e —
.] 2 b=t~ ’ [AP | 1] 1 H 4 4
et t 3.1 4 LTS T K N B) ~ -~ >] e SRR A | o> i N0 o
‘- L - (2342 R ARSI B5 0 5% 8 { 2% L NPRL A BN EIN A ' -1 €y D7 Zettd T3 T Terr) vy
g) [KA | 3 o 20T L0 X SR L35 TR R IR TIEE IR R T T | o & b I LIYENTY 4. W ey XD
- by Z
[[a4
. Y -
oy)
.4 “ 1 v [aN]
. it T n ey Q
et Y [kl | 0 b LY R g) —~~ »
- .t V4 [} - IS hd [.W 3
B 3R] P 4 S J] .w‘
t - TT I =
t > - o (&)
1]) A -+
.2 CorrtNIED LRTATCRY SN I | LSRR R FaVE o B | DM eI) i IR O e 4N S v I (T = %
v b i B 4 tt ¢+t T - IS S B TS RYa RE A KT YTAY e AN ML 00 Ul D . AT o N TUQRURY AL SN S SN U N (N o
m\ﬂ o= Ll) — 3 3 L mu
S ta . L4 A § 2 (2SR | N
I 1 1) (&)] D o o h
x — - 10 ed -p— = 4
YIS, > > 3.0 0) o o
n AT T TN T T S Y EETa o] ST} O LAY e) e« e ®» ® 8 o ® o @ st . > ®* ® o ®» 06 ® a6 % o 0 0 ® a e —
'L +rr 1.7 B I | T T 1Ny - - W [a7}
P |] tl 1) — gyl L") m
& Pre Ll] 2] Lol I ol
) o) 3 -w Jet = o
AL 7 — — —
LS I (&} D D~ ul un Lt
vy M - - Edad (e -4 N e N . [EaSNN o
A 5 ~ g .1 R
3 9 r 4 o . e -
o (S -t D v
N - n} (=] < - L h
' ' T TAN I RN T S N Lo I L B 4 N RR LR AV RS R] D «q N N L -~ D sded v Attt R
., 7O D oy aca D AR T N 3y DeIy DI > a0 v ooon IS T T ET y 2y D
) [] P < L~ S
4 o g OO 220 LML st - O (AR | ERERT N VY B SR & A Y g4 B 1o AR K. 4
TS A — 1Tt 3 — T 3 il 271} - U o 3 et J = 2y -4 [V 1 T4 = T V'
tm - D L X P w. S}
A T2 L) «TedfDg W e DY ST YT IO) camaomOamm e Y O N3t 3 10O 1M
3 4 X ™ M D (OO o - (SR LIS IS ES T Ik OO DI v ded D A MOLONINTOODINO
4 pus i S [-
[} ‘o - wu! < tat uw ul
L [IR IS 1 GEN O S aB R 7 15 TN SN SANNS ¢ TOOWNMIONE b Ul GgIn O Tl @7 U TNl SRS IR T o AT S0 R gRY N}
i ~onme may ey rY MDY O [Ll BN ISP RN I Gl Wl T3y 3 D
I3 Sy s RTRERTY T T ST Sy v RN sttt rtedeivivrledrd
AR A A T R A ST T TS ST A A T I O e L A A LTI Yo YA B | SN2 L B L]

T e e e Lk MG e i ——

A

X B e o

R AN o T TR P e

= ~ega

59

or loop class, and associated jump. For this example jump 1 goes from
executable instruction number 57 to 64, It is a type 6 which is
conditional forward as confirmed by the source list where it is shown as
JZ ENDER. This jump is associated with jump 3 which is also loop 1 at
executable instruction 63. The 1label ENDER is shown at executable
instruction number 64. Therefore, jump 1 jumps out of loop 1. Also, as
the analysis shows, jump 1 is associated with jump 7 (loop 3), because
loop 1 is nested in loop 3. Therefore, jump 1 is part of both loops,
although the jump table only shows the association with the inner loop,
because of the way the table is constructed. At the bottem of the
table, notes and errors derived from the final jump table analysis are
shown. In this case the only note was that jump 12 1is an isolated
forward jump which is not conducive to parallel processing. Following
this, the analysis concludes by listing the loops and their associated
jumps. This is the same information as the Jjump table, but it 1is
arranged with respect to loops rather than jumps. Also note that jumps
such as 8 and 9 are not shown as associated with the loop, because they
are not significant to the structural classification of the loop
containing them, loop 4. In other words, they have no influence on
program flow into or out of the loop. Therefore, although the loop list
might be considered redundant, it is interpreted in a slightly different
manner, for convenience in determining loop structures. This was done
for possible later use in analyzing loop iterations. It would be easier
to decide which jumps to examine, given that some of them are not

structurally significant. Using all analysis information assists in

examining the source list.

S

Ao

»

—_
[e

Y (2] ~y (3]
— — — -
T2 i I Y 'y -
¥ ntyv ik ty) T -
(R ISNIaV X) iL. 4.1 > 19 > > > 1) 4 - L] - b
RSCREPPN o N I UTRNSERATY S RRRARE L DA | L2 z 4 % o 1 1 + (, "~
D253) el wfY ela) e Diy) © P ~ > e e . 4 4 - g
TrEmAY DEE G S Sub THb BOFT S B | R GRSl B S A5 | rer'y LW IO 1 r T Jd N I x
DO])]) I | 4 4) '
AR VI IR - T IO R B SR T LY g S 3 gl I A AW S o] et S [SR ER AL = []
MR i 2 Mhas VYT)T D (T} [4Un Tc RN ars: NIT] T ITNIMONI D2 yDul el 7
NIVl % k] T I 155 OO BN LSS RN T I CERAS BRI T [I PR RN 1720 R B {
]
LI
— .
— ~ PRV
. 0 1) It - ATY B 1
M v v 2} vy wn J T ~~ i)
CY - © [1J 3 { = SR NV o 3
REET 11 1 b d b 3 > Q.7 m o
o by g 5
1 2 ot o
. « L
— IS T DO TN HON) 1IN I~ L0 vty FLVON O e dM tHiN O T L 240y £ M
14 Mt D DO VI PTM v R ALAANS ATUL RO Tk Ten) [T e Rin Xiot You B2 OO Y IPY] o vdrdedeledAd [oF RAVIa¥] o
A i HAA A A A 4 et > e O m
D) * r 4
O » - o~
* o P «t h
P4 * — —
) e o o ot * INWORN DN DI+400M 110D N O 340 F IO DO Ay IV LN D P 3] D e e [h
47 [Ta. 2 IO OO OO OO D0 O OO NN AN TTYYY 5 Y) N Ti0@ ™ m [}
— ¥ wn (]
wu! |87} - Lal ﬂ
. [m > w =, 1]
[al¥} kil 3 " (g [
P - - L} . D
b] ~ O 4 A -x L
e i " x
- %] e - —4
o W w k4
2 [} (VY] o (¥1] -
T ORI L it G el I3 L e — AV Y] o - n
P Loy You 130 She BN & SRS Fom Yo 2= ENERS THF R TR D T | (] (o) « [} (S B] N4 [] o () A
- — o - 2 N
= OO TN = N oMM > <1 fin} M + I~ 0] o m (&) e 4 1mma
D 31 tCc V) M.t ey d N a s b SN I t 4 o [T N
- O - wi [
AANCIM Z OC-ACOOHDWIMNMDM D L 4D M = A OMLWM-L Al ™) O 3 aqtn;! Y 0O 0
a MmO D OO0 AOMOCO0OV0 b FTOO-I11 0D T TNt AMIERY) O M OMaO W D0
1 L2 ¢ - t-4 (9% >
= . D . (] pd P
U st 3D MO0 oM O ™D o WM v g 3OO M s L U OLW Y D ML
Avd A f I NN MM M MY N MY+t b g RN S I TaRTaRTall aRTa NN & RN VoY AT oYY RN ¢ IV e BERN4S JERY ¢ 1N ¢ Neo)
rdvdvtrbed [V POy P i e e Y) detrteloivlet rdrdedvded v ot mbed ot edrdcdrdeiead edtvd oy
IR 2E JERSTSS Lin BN TSST N0 2N NNURINE LAVEN PENUS TR 0 A TR KANTRIE J' SN SR NNIL NI RIS S NS 2% S BN NI AS RO AN e A R 1 20 2 TS YAV Do RIN T 2 3 S SN AT Y]

- -

1 4)
) t) Br]]
] D . IR ET I
w 11— e -
"o | o] Yo 1y
N~ P (AN} [ANT % - - ~>{} MERANTY) - -
L n L et b} ~~ - - N CreeL Y > - o ~
e ' RS Y S 1) ed in < (R] . A el 1 10 d ‘) 3
Lt YT N Y A e I VRL R | - - (¥0) LS Ty ® Dlile D - "y - - o)
A O X < DYy N = il - OO ~ < ~ < D0
) L
]] [: J J]
I 1> 41 T [L0 I N S S LSSTI YA S T2 bt RN OFTRRIED SRR I TS S AT Rt <L AT Jr-
— =3 aa b D= 7771l 1.3 5.8 4 — o T Tty nn mnT o L ke 41T
o U ity 10O N [7219 I Y Shius BN [T AT [RCLEE B 7ARP U S 40 L 4 I [2ue] 1 I AR
b W7 Tr
D Y] ¢y M K
. — Lov) - -
[AN] . t- 1 S [}
bl (Y} > 144 (F%]
a0 Ny > Y e -~
1w m -4 |‘ — - Pad [4V] ~ L
-~ 1 < 3 T 3) <13 o m.
N < P Ou D « U = < g o
' el - 3] o]
] > - ot o
‘ () N e +
Z O rnoen~0 o vAOHD . D [ASRCRXRATRNIRE LAV - (Ko 3% R o RN BRR AR o TRV] 5o BN St I 0or~ o i 8
v LAVIANTOVEAV [aVIaN} (AN} Lhalialialoaliof o] Mmmr 113 T Fr 13t O D NN 223 10O Mw
/4@.) K vl At A eded Hrdrdvdrted * HedvtAdd A LI A AA A A AN D il e Avd it (O
- \u L -l
" : [> 1) o0 o H
N > T Py Lo
iy] L] . [3s) — <1 - 3 o o
) L ® o o o o o [hA) e - u. s o @ e i) (I 11D O < r N <ANIMY iy O T D tD 4 n [e¥T 5} . 10O —
‘Ao LETS AR VY SRR AYACES A3 c73 130 AHNNNE 457F RENNRATERTNG Xis SUE PR IR Do BERY SEPIE SRAE RS R | X RA] L ba kol m A
T [(] -~ : - sdrdvirirdvtedadrded 4 vl O et M Ao w
- - . .7 "D - ~ ot
) 5Ye) (7 = 0
N b v 3 g =) 4 ' T
) ¥ — s
(334 o Leal b m y ™ P [- YIS o RV
QO D » o -4 — T oo - 7Y D)
A3 '} [T 1e N ' DY
=] . uw t i > u. LS
o ud 79} > J
Lan TN B SLAU IR o I Vsl & n -t - ‘e 0 L LN | L -t b «l n o
i8] 2 0 [T] Ly) B } —4 =] b L.) ey] =) 4 (=) [[
D] mn " [
] [SANENNs URARE. S VE RN SRR U R B § SN A L) PARS] ,_ u.tdolLng "y 1y - 177 SRR S A
(VY RN G RS EACEA T 'Y R 051 PR /9 R o Y 2 RT S o [N e Re Cd W MmA ul ™M
- QO - Lol E 4 - [ad [oad
oo NS Ty O UM O ONMENNT = MM CY XY Y NNl DWWy L Wit O O U o wu oo
g T M OMpul g D0 I Crld 2V0O LIIDHIN) Q) MO DOOWLOMWOO W L 1 OO g O 1V
3 r. ¢ X > . B
] 1 e (&) [T] X <1 [}
W SOWT 0 T 20 T 1OHAIMO g o0 am) T OeHIM I OUI- D NS I N T Quite Y
: 1 WO OMRNARN O N O MO ne M 0 T Dh AN S e A INRFO ALAATE ATA RO AR GEEN & BENE S S SR & B¢ S S S - £- O Ja o
m 0 sttt d 4 et vledadedsdey LALEE 2 R B P R R P R B PY RS Y| et et 4t

(IS RIS TS 28 3B BEA-TIAL 35 35 I LA IR IES] 2 3 R U Toa b AR Tabal K R 2F SN DANERS PRNTIC IS Yol TL IR BER VNS I AR B E IRl B B X Le R

o O .- =~
~ Z v a
L& 4 - [72 B 4 hd Wi JOQ =Xt Ow Wiz O 0O U OQOLwoOYIW) wLruia & D
[42 (&) B 4 n XX om O S S PN T R S A S PN Y S AR I S S Y > o * o o -
ul W - QO W e «O Hedricdrtrdsdvivivdotvstodedvrivivivtird rdet- dvd i vdirivdadvdvdvdrdad vt HAedvicdrdvivid
[I | X VONT OVLLO .]
(&)
- > J ~ 4
L Q- > Ux0 Yadra - QOOVLVUOOQOYQOOOOOIONOCOLOOLOOHOOOOVUOCOLOXC O VOO
- OO MNOQEZS SAa>autl NN NNV UGB OIHNN N ENDTEn Doy n ey s mmnmeionninom
e n SO T TOTON et Ade(g d@gerar il Il aTedefaerldeieaiedal L il a1y
e
-y
. O
(V] (1Y)
] w!
€ Wi w | TR T -4 N
iy o n | | ol - ~~ +
> o« 11 w p A x e} 3
- b PE) a o % 2y
] W] = ..m
' 2 G &
1 (W) o
: WICIMD FUWOR O 2O LM [~ M
o y (O UNC O WOD T OMNNN m i
\O W > vdvrivivivd et HAvrivivei 9
S 'u v - %
m wn | oad [nwu
b u (73] -~
w O 2 14 o o
vy a o e 0 00 o TuaeilumM ~
N u - PXIVS BT NTANT YT ¥] u o,
<1 <4 D O et 1) M
O -1 ot
n [N x [2]
v ul o (73}
T e Ny Ww
v D 4 r-s w
[V BN O g
x (%)
- 0. a
a W Q [&] 73]
A s B . L] v o i
xr 0O W w w I
o ow u!
-4 N m mZoomam
w X w4 P TR LT T AN 2
- O - - «
Z el DAWDU MM DOm0 M ML 2N COL OO C O CC IR 0G Y d W (YUY INVALU D 1O DUy
2 CrLOIO0OHGCTOZOOUIINIINNI IN T ICUIINS T S I NN INNI 10T T2 T 02 3TOT 2N TN T
IS L (9]
? a) [e4] r.
t C© DOMHIONDTOOIU WO GamOrUWl r wiCIM 3 UNOMN € O T TOCUIL O N SHINOM P ORI NP S L
] AOMoe MM r 3000 COOOOOOONCOOAMDCOCOOOCO I LI WL LnwWumimibiu b b b

Q Hrlelvirdrivt rivdvieivt vivivicirdvivivririrviciciridvdri rivdsird et riri el drdriri v ivlrdvstAviv et i vt
t BT e T et N O T T RS TERY o FEEEE T oY KRR Y S e 1ot RN ol iRt T Rantl ob 1 <EURNY SENR AN saibingll ot Al | 8 J SRR SUNY oy

Y

R T

63

The source list closely resembles an ordinary assembly language
listing except for the addition of the columns for JUMP, LFPG, and EX NO
in the middle of the page. This example listing in Fig. 17 was slightly
modified to fit the margins by deleting the line numbers which would be
on the far left and bringing some comments from the far right to the far
left. Also, it should be noted that the symbol table is unchanged from
the original. See Fig. 17 (cont.).

In designing the program output, consideration was given to using
the program address counter or 1line numbers for analysis reference
rather than executable instruction numbers. Although the executable
instruction numbers had to be generated in the program, they were easily
added and are much simpler to use and reference than either line numbers
or progran addresses. Line numbers are not definitive enough, because
they include comments and pseudo ops that have no bearing on the
analysis. Program addresses are harder to work with, because they are
hexadecimal. Therefore, executable instruction numbers were used and
shown for the listing to clarify the analysis.

The final product of the analysis is the nodes of the LFPG which
are shown on the source 1list between jump number and executable
instruction number. These numbers can be considered a map of the nodes
of the LFPG of the microprocessor source program. The only part missing
from the graph is the edges or arrows between nodes. These can easily
be determined by looking back into the jump table where they are shown
in the FROM and TO columns. B looking at the LFPG nodes it is easy to
see the outer loops which are considered as a single node or task.

These loops are shown by dots instead of numbers to indicate a series of

]
L]
b
el h)
~ - —
L MO I e SR IN | o421 DT ON—r4(D D LYYy 2D ERYY P B [}
(V) '] - v v - " - "~ o ™ o e T v - > > * e e e e -1 |
[FY I T vheged Asdodav chvdedrdatcdedndvivt g R R R R R R R R RS R R R AR RN RN S R | - - H g -)
M N X} - FIhY =erey ¥ IR AAY EX LN LV R TR iy | i
!
4
' COY UC0D Yw a3) 200000 Y D60y m Y Y0Y D0De30C) 0T TS0 DY D) Y LS PR 1 /AT B K Y 04 Y04 | VPR
Yoo ALY MDA NN CNAANDAIN A DAY AN AN NN IN wnn (Y TR IV I NV IR (VRIFY I 71 B
-] “lv} 17Tefe 1) Tegef € Fof T fale¥ev [i " fa3 *-F {11 T V-Tep VY.f Tag-1, 1 L § 1 I3 YooY 4
v \\
Al 1
-
(3Y]
] Y [§F]
' it (4] n Lags dd0un 0.
LY n -1 wv A4 b'g TTETF — »
> 2 ‘4 ! J 4 Di4 =2 Jldld L] 3
) L) o 0 (8] 4L Iz T W +Du.
“ = 3
¢ prEE
Pod = M
g u S
ut = (4]
o ~r mv
~ [
¥ -~ h *
up D)
0 [h
[Za BT u (o]]
1 J 0
4 g
wn x4 (/2]
[Val 1
[I
v
[B
RalR Y]
.)
P S |
ry
4
FIEE i
- D -
el S edOQUIND Y 3 ML ™M Y MM L1 2 TN OGO TDIC) IINCIUW I N 90 I 300 A3 g
4 3 SHOMNINIMN 213 T 320N T IO O I FUARIOID 1T T TN INCICININTIN NS 3
‘)
] - F
[} QO O A MOOIL. AN IO O O T AN TV O N MO Gl O HCIM SO L M F oD
L] Wbt ol Wil U™ e D 30 30y T 30 Iy Y tededtrd v e leded s pdedvivded o A ANNINICININCT AN T 2 8 T3

N R R o e gy g gy et § T Ol T oS o Lo [V S W TN EANE N 1oV C eV EAN T NTRVTLS Yo T ol TV TAVE SN Lo Yol oV JUY SN TV T ST oW TRV IO TV EQ W TAVIAVRRV IV I oV LAV BN R TN | Q¥ AVIAV LAY 1N TRV | 3N}
[T T N i T N Xour TR PO T Tl Kanl e Kon FinToS T on RN Rl T AR Rad Ton FUR DIL NI FULTRATIL K40 AL Run EAn R R NS THE Kon TR Sun Kol THR Filb RGANEN Lub il oo Fon Bl JRURT e Kin Law L5k 200 Y on LR NN |

e A e v e e e cmis Tm v M2 - cm

IIDITTIIDIDIDY L

)y

cem L nn

N

YOI T4 T

<.1.37

[RIIAd]

c4n 0

33
- =
<.
AR}
-
]
b e
Y oA
14
1:\
~ a4
74
N
1
ro4
3
PR
S a
e
-
s
1
4
§1~
-
-
JZ
12
.
-
4

v
L LA N T N R T)

(RN AN
_

B <R NS B 2 Mo TaD AL I I8 LN T R & B BRYS
PR TN Ot 0.

[RUNITRAR Ry’

o
uown

(R RS W S o}

0N

Figure 17 (continued)

Jample Program Cutput

66

instructions in the loop considered as one task. The node denoting the
loop is the number corresponding to the backward jump that forms the
loop. This information represented by the LFPG could be used -=s input
for a slightly modified parallel task recognizer as discussed
previously.

For clarity the actual LFPG is shown in Fig. 18. To be used with
the parallel task recognizer, this graph would be used with task
transition information to construct the parallel processable task graph
as explained in Chapter II. There are only 54 nodes in this graph
because nodes 55 to 123 are actually parts of subroutines as shown on
the output list in Fig. 17. Note that loops four and five are contained
in these subroutines. Therefore, they occur more than once. This
indicates that it would be desirable to build a table of calls and
returns to cross reference with the jump table for finding loops nested
due to calls. This would also improve error diagnostics as mentioned in
the next chapter.

Other specific observations relate to this particular program. It
peints out the fact that the suitability checker 1is limited to
recognizing input and output by the IN and OUT instructions. It is
obvious that this program has a good balance of I/C and internal
operations. However, the I/0 is done by subroutines (in the read only
memory) which are known to this program only as CALL CI or CALL CO.
This would appear to be a positive factor for parallel processing in
this program that is not discernable by this suitability checker. But
there are negative factors that are subtle also. The internal

operations are too closely associated with the I/0, because the checking

PV SR

67

NOTE: All node numbers refer to Fig. 17 LFPG numbers.

NODES

Nodes 34 and 39 each

are Former Loop 4.

(40D @3y NoMt INTERNAL -

OUTPUT -
Former Loop 3 —— (54) INTERNAL -
Contains Former Loops 1 and 2.
Contains Former Loop 5 by call
if error detected.
Figure 18

INTERNAL -

OUTFUT -

INPUT -

INTERNAL -

oUTPUT -

INPUT -

FUNCTION
Load Stack Pointer.

Prompt user to enter HI and
IC limits for memory check.
Receive HI and 1O as four
bytes.

Convert LO and HI to

machine language memory

addresses.

Prompt user to enter NUMl and
NUM2 for memory check.
Receive the numbers as two

bytes each.

Convert each number to one
byte.

Display header.

Fill memory with alternating
NUM1 and NUM2 from LO to HI,
check, exchange NUM1 and NUMZ,

and repeat.

Loop Free Graph of the Sample Program

e -

ot

A TR EE e T T

68

done by the process in node 54 used the same variable names for HI and
LO as the input portion. This is an obvious conflict that could be
eliminated by using a buffer, if the programmer had been thinking in
terms of parallel processing.

Although it is necessary to use the parallel task recognizer ¢to
find the optimum partitions, it is obvious that the program could be
simply partitioned between nodes 53 and 54. That is, one processor
could do the I/0 and preparation while another checked the memory.
There is a possible conflict between the I/0 and the ERR routine which
uses the MESS and CRLF routines as shown in Fig. 17. This would happen
if an error were discovered, which would direct a diagnostic message.
This could be overcome by letting the memory checking processor
interrupt the other processor to perform the diagnostic message as
discussed ir Appendix A.

Another point to make is, that for parallel processing, it might
have been better for the initial prompt to have requested all necessary
information which could have then been processed in parallel. This
clearly shows, that the programmer cannot be disregarded. Programs
written for uniprocessors will necessarily be limited in parallelisms by
their structure. But improvements can be made by processing portions of
these programs in parallel. However, one of the most needed
improvements is to emphasize the need to program for parallelism rather
than sequential processing. The next chapter discusses conclusions and

recommendations.

e 2 TN D T me TMTYTT T T AT et et e e

VI. CONCLUSIONS AND RECOMMENDATIONS

As the concluding chapter, this discussion will emphasize the
significance of the work, general findings, suggested complementary
work, and use of the multi-microprocessor system.

The objective of this thesis was to incorporate suitability
checking into a cross assembler as a step toward the goal of assembler
scheduled parallel processable program partitions for a multi-
microprocessor system. This objective was achieved by solving the major
problem of detecting 1loops in the microprocessor assembly language
source program and adapting Ramamoorthy's suitability checker for wuse
with assembly language. The additional diagnoétics for structural
analysis of the source program were an additional benefit incidental to

the problem solution.

Signifi ¢ This Worl

The research reprorted within has important implications for
further research and for debugging existing or developing programs. The
suitability factor, SF, enables an easy meaningful estimate of potential
for parallel processability of the subject assembly language source
program. This gives ready indication of which programs should be
subjected to further refinement such that they may Dbe efficiently
executed on a multi-microprocessor system., It enables finding the nodes

of Ramamoorthy's reduced program graph or loop free program graph (LFPG)

69

T T

T

S

RS e 2 aahnSE A

e TR TR TR T TR, T

T e e e A e - e -

© et e

70

[13]. This is a task model of the subject program where all outside
loops are considered as a single task. The actual graph c¢an be
constructed from information available on the output 1listing of the
analysis.

The analysis of an assembly language source program does not
require any of the large square matrices used by Ramamocorthy's parallel
task recognizer before having some assurance that there is indeed
potential for parallelism. The arrays that it does use are not large
relative to a medium sized computer system. See Appendix C. They could
be compressed by superimposing some arrays on others, but the saving to
be realized is not deemed worthwhile compared to the increased
complexity that would be required. The presented version actually
combines the capability of a suitability checker and Phase I of
Ramamoorthy's parallel task recognizer [14]. The information from the
LFPG could be combined with applicable task transition information and
subjected to Ramamoorthy's parallel task recognizer to obtain the task
partitions necessary for parallel processing.

Ramamoorthy's suitability checker program differs from this one
with respect to loops in two ways. His program did not allow nrested
loops and did not recognize loops created by backward jumps or branches.
It dealt only with DO loops [11]. This program recognizes three classes
of FORTRAN-like loops in the assembly language program as well as nested
loops. It finds and notes overlapped loops which may be detrimental to
parallel processing. The ability to recognize loops will aid further
research in the area of determining program segments which may be

executed in parallel on a multi-microprocessor system.

)

T RS a T WP A gy T | o e e - ftlogp s 4o,

— -

71

Diagnostic me-sages output with the jump analysis and source list
have never been avai'able before for microprocessor assembly language
programs to find endless loops, find loops with no entry, find nesting
errors, and analyze program flow or structure. Although the diagnostics
have some conditions associated with them, they will prove generally
useful for debugging or analyzing programs. Programs that use
"vectoring"” will generate erronecus error messages, because this
analysis does not trace the vector. It would be possible to improve the
diagnostic capability by building a table of calls and returns for
tracing flow vectors and giving more definitive error messages. Error
messages for loops with no exit must be regarded with program design in
mind, because many microprocessor program designs purposely include
endless loops due to their dedicated nature. These diagnostics actually
tell more about hew ¢the program 1is structured than whether it is
logically correct. But they do provide objective automated analysis,
and will point out some problems. Using the analysis has already

revealed some general conclusions.

General Conclusions
The suitability of an assembly language source program for parallel
processing still depends on the programmer to a large extent. This was
readily shown by the sample program in Figs. 17 and 18. Even when using
implicit parallelisms the programmer cannot be disregarded. The same
process coded in different ways will have varying potential for parallel
processing. Using this suitability checker could help develop

guidelines by evaluating different approaches and selecting the best

one. As a software design tool, this suitability checker could be used

e e - b

wmv e e g et e aem < =

72
to encourage programmers to look for ways to facilitate parallel
processing and displace the habit of sequential programming. Some
initial guidelines follow.

Of the programs analyzed, those which had the best suitability
factors had simple closed loops, often with no exit. This supports
Ramamoorthy's findings that complex decision structures are not
conducive to parallel processing. Conversely, a system with a simple
loop could be set up to use one processor for an input/output driver
while another handled interrupts or did calculatiorns.

However, research showed that some programs which had a poor
suitability rating could be broken up into subportions which showed good
potential for parallel processing. This was especizlly <%rue for
programs which were written as one large loop where the back jump was
located at or near the end, and the return was at or near the beginning.
If the program is cne large loop, the SF cannot be measured except below
the level of the loop. See Fig. 16. This is because the loop is one
task, and the analysis will yield a SF approaching infinity as NX - NL =
0. Also if the program is one large loop, some problems cof parallel
processing are masked. Forward jumps not really associated with loops
will not be reco.nized as such, because they are contained in the large
loop. This suggests guidance for using loops 1in assembly language
programs.

To facilitate parallel processing, programs written with a main
loop should be designed to balance the loop with other tasks. Put only

necessary code in the loop, so it is not too long. Any task or process

that can be put in a subroutine can probably be handled by another

-

b At MR . g g | et e e is W = o

e —— =

T3
processor. Also, if any overlapped loops are used, try to nest them in
another loop. More guidance of this type could be gained by analyzing
more programs using the suitability checker. Many questions, as

outlined below, still need to be answered.

c W

One of the most important questions remaining to be answered is how
to implement the remainder of the parallel task recognizer for assembly
language programs. This could be done in an interim pass between
assembler passes one and two. It should not be necessary +to change
Ramamoorthy's recognizer significantly for this. The most difficult
task seems to be that of automating the analysis of task transitions
necessary to develop the parallel processable task graph for the
assembly language program. This was explzined in Fig. 1. This requires
finding the links between each task and the next task that uses memory
used by that task [12,14]. When this has been done the task transition
graph and the loop free program graph could be used with Ramamoorthy's
parallel task recognizer [11].

The next question remaining to be answered 1is how to load the
parallel processable portions of the program into separate memories with
synchronization primitives as aids to interprocessor communication and
scheduling. These would need to be based on the earliest and latest
task scheduling times derived from the parallel task recognizer for each
prcgram partition [14]. The assembler could append these primitives to
each code partition and configure the locad for two separate memories by

using two program counters. Some trial and error balancing might be

required to optimize the process allocations to each memory. This would

T4
be important in the development of a multi-microprocessor system. The
schedule or processor assignment must be tested and optimized for
production execution.
Scheduling Consid ons

Lorin described a streamlined machine with specialized individual
processors for scheduling; execution; and load, store, modify, or
transfer operations [10]. However, such a system would require breaking
assembly language instructions down into fragments at the wmicroprogram
level. Also it would require that each processor have the capability to
directly load and manipulate registers in ;he other processors. This
might be advantageous for a dedicated design requiring very high speeds.
But it would require detailed analysis and many design compromises
without the probable return on investment of a more generalized system
using standard parts and having more possible applications.

A simplified version of a dynamically scheduled system could be
built using standard processors with shared memories. This was the
initial attempt at solving the problem. Initial research showed that no
particular machine is better suited than any other. However, the
NMATIONAL SEMICONDUCTOR family of IMP, PACE, and SC/MP machines looked
promising, because they have built in control signals allowing
"daisy-chaining” interrupt type communications. Also the IMP is
microprogrammable and uses the same instruction set as the PACE.
Therefore, an investigation of the scheduling problem was made for the
PACE, so that the results could be applied to microprogrammable

machines.

75
The results of this are shown in Fig. 19. Even by searching on a 5
priority basis for the most often used instructions first, it will take ;

from three to ten instruction cycles to recognize the instruction and

Jjump to a routine that can handle it. Even using a more sophisticated
sort would take two or three cycles. Therefore, a microprocessor
operating as the scheduling unit for an application program would become
hopelessly bogged down as it tried to assign individual instructions to
the other two processors for preparation and execution. This would
create a serious bottleneck at the outset without even considering the
problems of memory contention, processor communicaticn, and
synchronization. After this initial dead-end in the research, it became
apparent that a different approach would be necessary.

It seemed that the dynamic approach was not only too slow, but that
there was too much overhead at execution time due to all the instruction
fragmentation and transfers to different processors. Reflection on this
problem led to the conclusion that if all this overhead could be
accomplished beforehand, operation would be more efficient. The only
logical time to do it was before the load. This left the assembly

process as the only possible time to do the scheduling. This seemed

. e o e ———— v = - . L

compatible with Ramamoorthy's work [1,11,13,14], because it would be
easier to schedule and synchronize partitions or blocks of instructions

with less overhead than it would for fragments of individual

i ot 7 rap s €

instructions. It was only a question of how to find the parallel
processable partitions, their execution time relationship, and the

necessary primitives to synchronize them. Therefore, the problem inves-

S

et o g e, 4o AR I ~ Ry 4TV SN e A T SN 7

.

Devan

(Y3

("4

-awa
R lal VR
B

A '~

AERK

C e e

Houne N

LS

[WU, B SRR | Sy

.l N

Y e}

i-

[S SRy7Y Sy, T SR, TR

PN

F

-

IR TR

’

N

AN

UL aDIHYDDN DDV

VKR
agu= 3

- A -
)

on

gt
700D

T0uT
LIr
CTe
r, ¢

(=1

(pe)
¥

ATl 2T
T4 T 4.

YN I N T
N

R I
-4 q

R

-4 e
- Ni-

v

>y

-

P % T
TnA4Annn 49

NI T e N
T MaONL et LoNn

NI BN DI e TS
Snan

2N .

-

Ty

DN DD
3]
=y

- >

DB IR AT

niN-

L1

i

nrn

4

e YTy

Sty)

L X5
Y

[

%]

—

(2]
4
-
<

)

ryg=
—

LT T B B

TN

*x &

*
1-4¢
Ve b e

*
A1

LI B3 O
s L

H
-

. R xR K « &
INGr-44) A
135 4e

o]

-y
3
[B IRVIR] |

DL

)

>

Je Tava,

Ni-

+* e dic Ne 8 "vige

(ISR A FEE &Y

by

o

4 4 <Y,

)

.o

Lap Moy

n

in

n

n

1

76

FOlF RLCE DT TIa
T AT T o/ M LAY THRNTCC
:,'_“_ =
TN OFs
L, Ot -2
-
As_~p
s)
LN l‘_(T
°R
-2
£2y TL, wAT T3
‘:T:
? 11
T4
Te
a :T:
% T2
22
[
T4
Se MIy 28 U4
7
1 7
« MLY 5Z T2
T = CYEZILTE
- L= o/ erY
7 T = Y?‘:‘\:Q::
SXAMTING TNSTRUATT RS T
MTTY WHT W Oy rssTav
CESSQSS £ sYESUTINM
R BN (LSHT vy,

Figure 19

PACE Instruction Decoding Sequence

~

(WY

[R A

seT

T

(ap}
wn
)

PRE
S
12
cu
4 a
L
-X
ey
??
5
5%
38
a0
G4
as
A
-l
LEn
o
Y
a0
FY
FY

el
-

cLe
XY
vy
“« X
X
X
Y X
4
4
vy
2
XY
)
X
<X
XY
X
Y
¢ X
XY
T~
Y X
X
XX
Y x
(X
X X
MR

-

(5 UNIT)

(2]

77
tigation proceeded on this basis. The suggested configuration and use

of this system will be the last topic for discussion.

Confi . L U s
M j-mi s

Tne multi-microprocessor system should be a generalized design
adaptable to dedicated tasks depending on the application program. Two
broad system classes would be development systems and production
systems. The former would need additional capabilities for editing and
manipulating memory while the latter would be more specialized according
to the application. The asscciated equipment would be determined by
user requirements, but both systems wculd have the same basic design.

This generalized system should have two or more processors with a
common read/write memory and a private memory for each [12]. The
private memories would be read/write memcry for a development system znd
read only memory for a production system. Program tfasks with
synchronization primitives would be loaded into the private memories by
the modified assembler. Processors would communicate using 'mailboxes"
(1/0 ports) which would indicate messages in common memory [2,4]. See
Appendix A. The individual processors would not need to be highly
specialized unless this proved beneficial to the particular applicaticn.

Adapting the methods used here to any particular microprocessor
language should not be difficult for someone who understands the subject
machine, its op~codes, its instruction set, and the set of modifications
made here, Although much work remains to be done, systems of this type
are both feasible and useful. They can be developed relatively

inexpensively for either research or commercial application.

BIBLICGRAPHY

(1] M. J. Gonzales and C. V. Ramamoorthy, "Program Suitability for

Parallel Processing," IEEE Trans, Computers, Vol. C-20, June 1971,
pp. 647-654.

{2] P. Gebler, "Linking Microprocessors to Increase System Throughput,"

Electronic Engineering, Jan 1577, pp. 52-56.

[3) R. A. Perrin, "High Level Languages and the Microprocesscr,”

Electronic Engineering, May 1977, pp. 65-67.

[4] A. J. Weissberger, "Analysis of Multiple Microprocessor System
Architectures," Computer Design, June 1977, pp. 151-163.

[5] W. L. Spetz, "Microprocessor Networks," IEEE Computer, July 1977,
pp. 6U4~T0.

{61 K. Rozsa, "Multiprocessing Boosts Microcomputer Power Drama-

tically," Electronic Design, Vol. 6, Mar 1%, 1978, pp. 72-7T5.

{71 T. Doone, "™icrocomputer Multiprocessing Increases Throughput,"

Digital Design, May 1678, pp. 102-110.

[8] "Advanced Software Systems Design Course,'" (Editor's Tutorial),

Electronic Design News, Oct 20, 1979, pp. 294-336.

(9] Y. P. Chien, "Multitasking Executive Simplifies Real Time Micro-
processor System Design," Computer Design, Jan 1¢80, pp. 109-117.

{10] Lorin, "Moving a Single Processor System to its Limit," Paral-
. ;) . ;
(Englewood Cliffs, N. J: Prentice-Hall, 1972)
(111 M. J. Gonzalez and C. V. Ramamoorthy, "Survey of Techniques
for Recognlzlng Parallel Processable Streams in Computer Programs,"
, AFIPS, Vol. 35.

{12] A. J. Bernstein, "Analysis of Programs for Parallel Processing,"

IEEE Trans. Electronic Computers, Vol. 15, Oct 1966, pp. 757-763.

[13] C. V. Ramamoorthy, "Analysis of Graphs by Connectivity Considera-
tions," ACM Journal, Vol. 13, April 1966, pp.211-222.

78

79

[14] "The FORTRAN Parallel Task Recognizer," Final NASA Report, Grant
NGR 44-012-144, May 1970.

(15] T. F. Fox, Hon F, Li, and C. V. Ramamoorthy, "Scheduling Parallel

Processable Tasks for a Uniprocessor," IEEE Trans., Computers, Vol.
C-25, May 1976, pp. 485-495,

s

.
'

%]
43
|8
—
[
=
€2}
Q.
o,
=5

—— e -

80

miithrn - b b ot o i e o

APPENDIX A

SUGGESTED INTERPRCCESSOR COMMUNICATIONS

e

81

e L —— T O P, - T T S PRI AT | O g e < T %

82

This is a brief discussion of why interprocessor ccmmunication is
necessary, how it could be accomplished, and how it could affect machine
design. The two main reasons for communication between processcrs are
resolution of conflicts between common resources such as shared memory
and implementing task scheduling. Once the processors start executing a
partition (set of tasks) they must follow a plan for transitioning to
subsequent tasks in a predetermined fashion. Scheduling hueristics have
been developed by Ramamoorthy [15]. These are probably applicable, but
that discussion is beyond the scope of this thesis. The task execution
will also generate resource conflicts that should be resclved in a
systematic way. Djkstra, Knuth, and Coffman have developed efficient
algorithms for scheduling shared resources {11]. No matter what system
is used there must be a means to communicate between the processors.

It would probably be desirable to use the I/C ports of each
processor as "mailboxes" [2,4]. This would mean that I/0 would need %o
be accomplished by memory mapping to leave the ports free. nerefore,
the interprocessor communication would hav. priority cver I/0. The /0
could be designed to work through each processor's private memory, so
the shared memory would not be involved either.

Interprocesscr communication through mailbox messages has been used
in systems such as MULTICS and also in smaller machines. It is an easy
way to quickly indicate that one processor has a message for another and
imply the degree of urgency. The notification requires only a byte or
werd in the form of an address on the I/0 port. The message itself may
be much longer as it can be stored in the common memory. The message

notification may be accompanied by an interrupt signal if it is

ooy
A r——— <o TR AT A IR, | 7 S g omT % e

83

important enough to deserve immediate attention. Ctherwise, the
receiving processor may be set up to check for messages at the end of a
task or timed to check at specified intervals. If meny messages are
required, the mailbox may contain only a notification, handled on a
schedule, that points to a part of the ccmmon memory where the messages
are stored and pricritized. In this way the receiving processor can
handle the messages as its schedule permits. GBut it will be =zble to
accept a larger number of messages than would be possible if 1t waited
to handle each individual message in the mailbox as it arrived. Tne way
these messages are used would determine <the system design to some
extent.

After the program partitions have been scheduled and loaded with
the proper pointers, the partitiors would execute and point when done to
the next partition. This could be done at least two ways. That is, the
cempleted partition could return to an operating system or simply
transfer control directly to the next process. This design decision
would depend on the desired level of sophistication. B8y pointing to the
next process directly it would seem possible to execute faster with less
overhead. The proper synchronization primitives could be added to each
partition by the loader, so that the task could not start until it was
allowed to. Each partition would set its successor's primitives when
finished. On the other hand, this function could be performed bty the
operating system by updating a table which would be checked by each
partition before starting. If the process was not allcwed to start, the
operating system could retain control for more flexibility rather than

simply idling the delayed processor. But in a non-dynamic scheduling

84

situation for a dedicated system, this degree of sophistication is
probably not necessary. Tasks could communicate directly with each

other with little overhead.

APPENDIX B8
ASSEMLBER MODIFICATIONS LISTING

H
¥

I AD=A092 216 4IR FORCE_INST OF TECH WRIGHT-PATTERSON AFB OH ¢ 9/a
rONS!DERAT!O:? FO: AN ASSEMBLER SCHEDULED HULT!-”!CROPROCESSOR "ETC(U’
R L STEWART
UNCLASSIFIED AFIT'CX-!O-“

2 : 2-

l......... :

"m |0 %R j2s
—_— i JI32
= &g
“I“ TR =
= &
lIL2s [l pis
] = |lI==

MICROCOPY RESOLUTION TEST CHART

e . e S e e T 2

3 . & e -
e s ha A ——— —~—

86

*.0 P2.11SC

*

F2allent

ek i o [RVRPRNEIN okl a BV e TR, e IR i

C VERSICN 2 1S AF~ 30 = PERFORMS SUITASILITY A°ALYSIS
FOr PurmacoEL PRICZSSING 1 ND
JUMP ANBLYSIS (30Th Fl« JWTEL

« O O O

[ad]

8330 SOURCE CULJE ChLY)
P2u11.E5
COMMON/LCOP/LPMAXLPLLIC) s LPNCLGIES
COMMON/ZINIT/ZJPX (L0009 2) ¢ JP(200e9) 9 1STCF 0y
P2411.71
JIMENSION LP(iuvi) s JPIESI220)
P2G11,11C
DATA JUPGLt+oJPDES/.C0¥0e120*2,203%0/
OATA JPX ,s20°3%0/
F2ui1,.1269
LINENM=(
P2412.16¢C
GC 76 5439
P2411,.1¢€7
GC TC 554
F2uil1,173
w0 TC 53¢
Feul11,18.
GO TC 544d
P2411,.,114

ZEXQC VARIZBLES FOR SUITAS3ILITY EGUATC:

SUITASILITY FACTOR

SF=(ed

INPUT /7 QUTOUT INSTAUCTIONS

NIO0=(

ARITHMETIC 7/ LOGICAL INSTRUCTIONS
NAL=T

“ST .0, FFG

b e dans mn o Do a1t oo . <hon o it e B S bt i

P

A Iy i~ s o
87
C chuLS
=0
c JUMFS BACKAA~DS (LuJPS)
NE=9
C JUMFS FUxXWA=R] (NST RELATED Tu A LOuP)
NF={
c EXECUTAZLE INSTNUCTICNS (NX ALS3I JSED T4 JETZ alle tild
hXED
- SESTAUCTIONS WITrIM LCCPS
pL=0
c
c JNITIALIZE JUMP TABLZ INCEX, NJ
. MNJ=1
c
c JUMF Ta3dLc CONTAINSS (1) JUMP ~JJ=E33, (2) i ikiatis
€ ACOFESSy (3YJUMP TYPE, AND (W)INCEX (WU OF
c ASSCCLATED wLCCP
c
c Junf TYpPES &REd WwJOF CLmo3is AmE?
C L CHOITIUNAL 848CKWAAD 1 3.ws
C & UNGONOITICNAL SACKWARD S LNHTL=rIlLkTE
¢ 6 COHGLTIONAL FIRwARS 3 LameLx
c & UNCONDITICNAGL FO<WARD
G
C WALTE HEADZ - FI- GUTRUT OAGE

nElTE (Slebi3W)
€6.34 FCRMAT (1HL411X " ===INTEL £J3: JUMP ANACY3IS-== vin *
b 24409 19 APF 30 === /)
$L P2u4iieln?
CALL SMSRACH(LAZELXKPTK)
JFOES(KPT <) =1ix+1

¥I PTati,taL i
Nzt et ‘
* 22411,137
T4 50 TN(556e15926010020,1992C0e20020423¢28482458420,1007
T 02L11,207
g SILL SMSPAH(LAIEL,KPTE)
i JPIIIUKOTE) =NX 4y
i

SELHEEN-ER

- " THEZK SUITANILITY FOR PA%2LLEL PRCCEZSI a9y DITIIMINING
r INSTRULTTICH TYOZC AmD USINMG &2 SO3MUL A T3 CSHICK,
5 >
2 LZETTHMETIC 22 LIGICAL IMETOUCTIOM?
L ::((or‘rc;, 32 TD) S :
1
Tl rDZ, 670,272, I000S,53,128) 60 T) 5] ‘
TEUIN NI LTe27 204 (MOAD(IZOTE4BYaET4C)) 20 T2 567 ;
TE(TITA)2,5T4124) GO T 58,
i
» TOUMT ASTITHEMEITIC 2 LOGICTAL INSTRUCTICH
s T vA s AL e
3" Y'j ==
~ Sl S JyMD?
* ZLTOIF(C, 1 TLE) 58 T 540
TEAUAPITCC e M) LT) 55 T 20
1 ~ SOMITTICHLL tALL?
IF(UNTIITCYIZa8) (MELSY 30 TQ 42
HCsNT e
I
50 Tn &3¢ ’
S NF=hMF ey
gec S~ T 352°
827 IF(T IS, LT,.134) GO TN 55¢
~

r JLMSS e CHFErw TvRgE ¢ QYILN TaARLE

s

i OGN & icrs S A W KO

«Q

[$]

<)

<

(]

()

£25

J
(AN
~

n
nN
[+

89

F1#ST FIunN 17 JEST I3 DEFINED (ZeZe Fnl 3- 3A0K)

CaLL SM3KCH (CFL +KUEST)

IFLICO0EEWLLS) By TGO 3527

UNCONCITIONAL. IF FW], DCON'T KNOw ODEST «D3sE
IF(LOLSIKCEST)eERe=1) GO TO 325

DESTINATION INSTAUSTION MNUe OF JUARP ZeiX
JFINJL2)=JPDES(KIEST)

JureP CLASS

JF(idye3) =2

JF(HJe) =Ny

G TC 529

UNCCHCATICONIL JUMP FO~wh -0

JFANJ$2) ==KUEST

JFINJ,y3) =14

oG TO 533

CONOITIONAC. IF Fwdy DOM'T KNCH QOEST
SF(LOLS(KDZST) e E2e=1) GO TO 523
LESTIMATION IN3T-UCTICN NCo CF JUMP 5alXK
JFINJ$2)=UPDES(KIEST)

JUMP CLASS

JFINJ,3) =2

JPINJg2) =Y

o0 TC 52

JUMF FUwwWily

JF(NJ,2)==<DEST

JF(MJ,3) 2c

6C T0 53¢

T
[}
()

0
r,
(")
(Y]]

CCUNT A LLOP AND LING-EMENT LCCLP T,.3LE 95, TS

nSENp el

-

[A]]

YeT.

mm e e i At et a B o K S0 s = L et

o AR S A ey

L

| 90

¥ SWVE JUMP TA3LE INOEX CF LCOP
c

| LF (NE) =NJ

" c
c JUMP TA3LE CVERFLOW
¢

53(CONTINUZ
1F (N2eGT.133) WRITE (50,$391)
3961 FCAMAT (1X, " +++WARNINGs ASKAY LP JVESFieLEde
E 1 “MCKE THAN 131 LCIPS."/)
| IFANJeGTe202) AITE (5545 :96)
3996 FCRMAT(1X™#++wAr iNGe ARPAY JF JVE<FILLED. “u-E Thaw®
1% 200 JUMES.™/)

c
c JUMP ADCKeSS
c
JE(NJy1)=NX+1
"
C JLCREMENT JUMF TAa3LE POINTER
c
JEX (LINENML1) = NJ
NJI=ENJ+L
GC TC 559
c
c 1707 i
Tel IF(KetNEW3) 50 TL 3590
IF(ICCOE4Z04222 00X ISLOECEQ.219) HId= el 3]
; IFI(MCDUICLDE &) 4EQeB) GO TC 5.3 i
c !
c CCUNT EYECUTASLE INSTRUCTIONS
c 3
553 NXx=zMNX 431
3 JFXULINEN~92) = 49X

OO0 o0

(g

O O O O O

(9]

(9}

eC TO0 1

CHECK LO0F CCNSTRUCT3 AT End LF FA4SS (T

SAVE HUOA #shinY JUMPS (NJMAX)

CCNTIhUE
PIMAX=tId=2

SAVE WUMB8ER GF LWC=S

LPMAX = N3

()]

FINDG NX OF FAD JUMP JESTIMLT.CHS TJ US
IM CALCULATICAS FG< NL LATER

CHECK ALl JUMPS

CC BE7 JC=1,%UMA«

wLmERDY KNQ A NX

IF(JIF(JC &) «GTeuw) GO TO 557

IF MNCTy CHECK ALl SY'130LS

NC S5€ JS=1,SM3PT=

IS THIS JumF ASSCC WiTH THIS IYqelLl?
IFGJFGICs2) €N =JS) JF(JCec) =JRPIESIS)
CCNTIMUE

CUNTInUE

e IN LOCP OF TH41S PO~TION ANOEXIS JUMP 22 ¢ _HILKEI]

CC 590 MC=14NJHAX

mJsNJ=MC

MAS THIS JUmP JEEN ASSCCIATEC wlTr a (out?
IFIIF (409 6) e GT o saNDeJP(MJe3)e0GT2) 57 TD 5.

Aenmidics

Bttt P R DA i

92

c IFANCK ACLORULING TL JuMP Tyo:

JFCIF (MY 93) 63T e GalNTedPIMY43) o Ta2) GIL T2 Z-
IF(JFP (MJe3) sE€Qe€) O TO 576
iF(JP(MJ,2) eE2e3) SC TO 57€

c IF IT wWAS HOT CNE OF THE A2ZCVE, SnLd aiv Sn-
W=<ITE(50439°-) My

3933 FORMAT(LX ™ ¢++emarNIiNGe UNCLASST

DETERMINE LUCP CLeSS 2y 2y U- 3

",

<J
)

c
c
c THIS LOJF CrHECKS FIORWARD JUMFS (LFL) YU a3:i_ C.aTs
c THYE~ WITH THE BACKWA<D JUMP (MJ)e TY 8E aS3:7,aTER,
» THE FORANAXD JUMP MUST 3TAAT it A _JOF,
c
562 CONTItUE
c «PIILALIZE ENTSY (KFE) AL EviT (KFJ) Foass T. UhNE
KFE={
KFC=(
MFi=pJ=1
CC 576 NC1l=z1,vF1
NFLlsgeNCL
C I3 17T & Fwd JUMF?
AF(JF (NFLe3) oNEoeSed D aJF IMFLed)eNhEes) GC T, 74
c YES, OUZS IT CRIGINATE N THZ LIGF?

AFUJF GaFL 41)eGEJP 1 1002) eANIGUP(NF Lol aT o d5 (- Uyl))
£ L0 TC Skt
c .
inCo COES IT JuuP IN?

O

IFUIPINFL92) ol TaUPIMU92) sURGIPLIFL,Z) GToUPIMI1))
1 GO TC 5764

CALl FINIJLF (M)

WhITE (5043903) (F1yvJyLFNO

GO TC 576

s+ Lo 21 Pl > et .

-) c COES ORIGINATE I THE LSGP. =o

m

3 4T guns JJ7?

564 CUNTINUE

: IF(JP(NFL,2).GT.JP(MJy2)) GO TQ So5

;‘ c NUTE INSIGNLFICANT INTERICK FW)D JU4P,

| CALL FINOLP (MY

HI IF (UP(MU,3) . E2e2) WRITE (53,3395) MF1eMJyual
. GL TO 572 ‘

c YES. JUMP OUT. ENTRY IF CONDLITIONML.
565 CCNTINUE
IF(JF(NF1,43).EQ.6) KFE=L {
c EXIT MAY SXIST SINCE THERE Iu A JudP Cui.
KFy=1 .
c : |
¢ CHECK ALL PSEVICUS FAD JUMPS 10 CETERiia £457. E
¢ !
NCAL=NFLl=2 [f 4
GG 57C NC16=1,NCA1 4
NRENFL=NC1d
c 15 IT FuJ?
IFGJF (60 3) enEaBoAND L JP (NG 3) oNEox) GO T2 57
c 1NSIDE JUNP AFQUID?
IF(UF Cioy 2) olTaJP (2 y,e2)) GO TG 57,

dF(UF (B9 1) o 3To UP(HF1 41) eUReJPLIEI2) e T e dS(F 1 ,1)
1 oCRaJF(2D02) e 0TedPIMIpL) «UXeJP(MIg2) eusT o b3l m,y20)
2 GO Y0 57)
aFAJFINEGL) e oTol) WRITE(S,¢3%37) MNEWIAGUIP (o yn))
JPIHE y4)=UP (MJyu)
9I0T FCRMAT(LIX9y*WOTES COND FWD JUMPIL"™ ENTE-S 3..% JU.P“
i I6% (LCOP ™44} FAlGM CUTIIIE IT3 =ANGE."N
CURFENT JUMF TYPE FX0F D0 577
IF(JF (NFL43)1.EQe?) G0 TO Sed
c TYPE 6+ I3 JUM® A<CUND A TYPS &7
LF(JF (NG 3) oERQec) GO TC E7.

O

3302 FOOMAT(LA"¥*% DGSSIBLE E520re D EaT=Y Tu L)+ # 4
L0 (RBGK JUMP L4) UNLESS oY ~ZTURL NS T o uliaol ™

2 “FRCM JUMP CuT."/)

KFE=1

| c
¥ c CUMPLEX CLASE 3 LOGLP?
1 ;
i | IF(JF (MJy 3) oNEo 1) JP(MJ,3)=3

_ 6¢ TC 573
?‘ 566 CUNTINUE
1 c TYPE 64 IS JUMP a-CUND & TYPE 52
3

c

IF(JFP (B 3) o2 8) KF3I=(

: 573 CCNTINUE
LaALL FINDLP (M)
IF(IF(MI92) eEQeC e ANDCKFEWNESL) ARITE (.9 3372) Ll
KFE=¢{

572 CuUNTLtuUE

IFUJPLHFL 94) eHE e JeANZaUP(RFL b)) eNE0JFP (1 Jy <))

WRITE (5199397) NFLGIARS{UPINFLy=))

JP(inF1i48)=dP (%))

=7+ CCOWTIMNUE
CALL FINDLP(MY)

e

IE(JF(HJos)OECQZ.A'\.JOKFOJIE.L) AF;TE (v «22°2) "lJ’LF‘\u

5C TC 334

3335 Fu=MAT(IRe™ATE e COND FWD JUHF Mo o0 2o, < Jtinre ™
1 Io* (LOCF™I4")y AJT I3 NOT SIGHIFICenT 71 _To ™
€ USTrUSTU=2L SuLa=SSIFICAaTIuN."/)

3397 FCRMAT(IXs"™NOTE s Fwd JUMF™i6"™ ALSO A2SCl WITH JUrfF*™
1 i)

c
v THIS LUNF CHECKS ALbL SUSSEQUENT L322SS (F+) - 4unsT
o} TreE FHD JUAP (MJ) FQoUNDS IN JU 530 TJ SEL JF 'J JULMPS

N i tnzie

95

ArQUNL ANY OF ThE CTHER LOCFL (NiFa).

O OO0

576 COUNT1IMUE
NCAL=NJAAX=MY
DL 577 wWCI=14NCEL
WF8=NJ=NC 3

c IS NF& A BACKAARD JUMF?
IF(JPINFAE4,3)46T43) 6 TO €77
c YES . COES MJ JUAP ARZUNI LUO~ NFO7?

SFUIFIMIG2) o2 oJPINF341) sCReJP AL e 5T adF L .rmyl)
i GO0 TQ =77

” 0.0 1T JUMP A<QUND A FWJ JUMF A4_507

BF (UP(MJam) sieT e et e dP(=JPL¥Jy0) 430 4T 0
bt W ITE (52433900 HJy =JP(MUW)
CuLl FINS_P(NF3)
e ITE(5dy .5 e) MJgNF: 4LPNC

3334 FORMET (1X,™4CTE. FWD JUMP™IL®™ A2LUD SACK Ju + ™
1 e™ (LUP™La")%/)

” 2SSOCLATE WiTH =-LGOP

JE(MIyu) ==HF3

577 CCNTINUS

tFuUsMJ=21
o TeIS LONP CHECKS QLY PxEVIOJUS FWD JUMFS (4.U) m.sINST
c THE FWD JuM? (MJ) TO SEE IF THIE IS £ Ju-® -~ SUNT “J.
CO E8&t NCF=140FU
hCU=MJ=NCF
c 1S NCU QA FWd JUMF?
IF(JF(NCU,3) LT) Go TO 546
c YES. DOES NCU JUNP &iGUND MU?
IF(JUF (NCUs2)eLEGJIP(4Js1)) GL TY 580
c YES.

. e

<)

O o

c

(@]

c

(@)

O

OO

(¢}

2333

.y B . o . el ot s T 2y ke
y 5 S e e e DR O . AN s, - 'l 1073 i
e g & o R i

L
e ot

e o e r—— T A o i O , ;

96

ALREALY ASSTC W1TH OTHEY FWD JUIPS?

aF (UP(NGU») et TaleaidDa LUP (I CUy 4)) B =}
1 NCUs=JF(nCUyy)
1 ARITE (20433G0) WCUy=JFP (nCUy)

aSSCC JUMP HCU wuTrm =MJ TC SncW JU'IP 4 LUND,
FCRMAT (LXy™NOTE. JUWF "Lu®™ ALS) gunue/Ptl L-3J7 %
1 CJUMP™ILT"."/)

JFEINCUy4) ==11J

WCU CONOITICNAW?

AF (JFINCU$3)eEQe) GI TO Z¢&a

AFITE(Z3432333) NLCUWNFS

CUNTINUE

FORMAT (1X,""%#%% 30SS5I5LE E&<C~e UILLIWD FAD Ju. P ™
1 6% ACUND FATD JUMP "Ie"."/)

IF FWD JuMP (MJ) 1S MNCT ASSCC, ASE)
IF(IR NIy @) oEQe () JUP(MIsis) ==MJ

(@]
4
-—
b3
)

a
[N)
-
(n
(al]
4

al

Fiul FORMAT (Lx,"**%* POSSIcLE ExRUMe NO ZXIT F-J4 -40k ™

)

i MIUMPUT 4T (LOTP*™I+") UNLESS 3Y <ZVus . 1950 -UCTZICw ™
2 “Cr OQVERALAFPED ,03P."/)

END MAINM LOOF TO CHECK JUMFPS

CONTINUE

THIS LOOP CHECKS TME FINAL JUMP TA3LE T3 Il am_TH
LCOPS A<E NESTED 4ND TO 3EE iIF ANY 4-E vI- ifPEl
WHICH WOULD CAUSI ExFURS IN THE JUM? ANALYS. U
LUGES=LPMAX

FLAG CUTEFMUST LOOF FCm LISTIMG

LE(LCCES) = =P (L00ES)

NC 588 KCii=1sLPMAX
CHECK THxCUGH ool TdaLt FACKWARLS
KC=(LFMAKL+1) =KIN

<)

(S}

O

O

O O O O

P
e v e e e m e - . 2

97

aF FI:ST LI3F I Felo~a4y M w220 TI Zr-TLa IS8T,

1F(KC.EQe1) Go T2 587

BIEVICUS L3J33F NESTED I PYESELT LouP (KXC)?

IFUJRPLEIACSL2(KL)I I e) 2o dPUL2(KC=2)y2)) 30 TO 256

SF(KCeEQeaLSUES)Y 530 TU 585

FREVICUS LOOF NESTES InN CUTER~UST LUuFf (Lu)IJE5Y?

LFOJFCCIASSILPULIUES)) 2) e e dP (2 (KC=1) w2))

1 WEITE (50,3362) KC=1,LCJES

F~EVICUS LOOF UVI-LARPED wiTn P=ESEIT L20+ (K07
583 IF(JPILP(KC=1)91)eGELJFILPIKC) 42)ANT

1 e JFULPIKT) 42) o ST JP(LF(KC=1),2))

2 WFITE (204:-:00 KL=1,KC
$330 FCRMAT (LXg™ 44+ WaaNinGe LOOP™IR"™ JVERLe=2I) ~_TH LZI0F"

1 Le™y SF OVALUE MY NCT 3E veiMineFUcse o7 2o ~Y LT

2 " 2B ACSURATEZ.'/)

¢ TC 5.7
225 welITE (S5433:32) KC=1,4C
3232 FO=YAT (1%y"™NCTE, LOIF™IS®™ NE3TIO0 IN LLsF"Iu/)

abAT IS LaDES?
SR7 IFAJFILF (LKC) 42) o 3E P LLLACS(LE(LLOES) I 02)) o T 3Sée

SWLTE CUTE=42ST L0NF Inh TA3LE

«C0ES = KC

IF (LCOES.ENWLE3X) 50 TC S53nm

LFILCNES) = = P (.COESD)
3 CUNT LU

TRIS LO0% CHELKS TrhE FiNeo JU¥P TL3LZ T.

FIND THZ TOTAL NLA43Ex OF FLRWiRD JUIES

tCT LSSUCIATED wiTH LULOPS :

591 1CJ=1,"JM5x
(JPUICJy=) el EW)

JC

of AF =zl Fel

571 CONTINUC

(]

O

\Ji
w

I
¥4
(S 1)

1
2

2332

sl
1

596

1

T R I

98

CCUNT M3T<UCTIZ o> IN LIUFS
1LSTu=y
DL Su: NCILT=1,0PHaX

IF(LF (NCNT) o GZel) G0 TU 554
INSTL = JRUIRES(LFININTY), 1)
NL=NL+.4STL+1

GG Tu 535
CUNTINUE
MB rB -
CONTINUE
IC=FLCAT (1.IC)

ALSFLCATOUNAL)

UC=FLOAT (1.C)

3J=FLCAT (1.3)

FJ=F L OLT (F)

EX=FLCAT (MX)

EL=FLCAT (ML)

IFCINK=NU) enZed) GO TC 5352
SF=((IC+AL+UC+3J=-FJI/ (EX=PL))=(2L/Zx)

= JFULABS L= {uZ. T,)

1

-

W-1TE (53,9041) 5SF

FORMAT (" SUlTazIilTy FACICR FIR Paamliil & 2IZICZINGT
OIS CFT742"e ANY VALUE nZITET Thate 43 IS Fave-®
CAELE.T)

«C TC 54¢

W-1ITE (5243212

FCEMAT (1A% === _30r ST<UCTUSE IS 8JUT SLITaS_Z Fe-
“PrrAcc€e PSGCLESSING AT The3 CZvIle ')

ConTINUE

PRINY THE JuM2 Ta3LE

nrITE (5043399)
FCROAT (1x3T55,"JuMP TA3_E"//
1X’T “6... r‘|J|u_1Axl.2 K..l“l .lellr;ALl.‘Kll:.CIOE

3 \“..F ..J 3

(LY
N o

e 2o Bl 7 Sl S IO A Ao (o5 5e3. N A i+ Sl RSN AL S

e e e e et e e ke e

99
2 AL ITR™HA™)
WEITE (5.46000) NIMAX ghiDgivai 940y ¢3gieTgoal g Nt

50u) FORMAT (1XsTub,c(laeXi/)

WeITE (504,60.03)
5035 FORMAT (1x9Ta5"LO0F JUMP ™y 1X 4 “Fr0i1" 2K T3y " TYEE™
1 1X"2SSoL*)
JNX=0 :
DG 7003 I0=1.NJMAX ‘
WRITE (50546522) 100 (JPUIDs1V) sIV=Lya)
FORMAT (149TE04139Xe(Tuyx)/)
IF(IDGEQeJP IOy =)) JINKSINK*1
IF(I0eEQedP (iles)) WRITE (50452151 Jha

Q015 FUPET (11X gT S e 1392 X CO0HRERRISRLIRAIFRAEIRLERIRERY)

»n
[85)
[
[

7CCJ LONTLNUE

PYINT THE JUIAP ANALYSIS
o
WEITE (Suy3tni) |
2480 FGO AT (1XoTaTe*JUMP AHALYSIS™/) ;
S SMOEX THEGUGH JUSP TasLE ,
OC 597 IC=1,NJMAX |
IF(JF(IC,3) «LT.6) GO TG 557
S CFECK FOn ARY SI<CUMVENTED ZHST(UCTIONS (JiCori Juvd)
IF(JF(IC,3) «iEad) GO TO 5966
q ¢ LOOK FuR FREVIJUS FOAWARD JUMP TG IISTUSTION
3 ~FTER UNCCUDITICNAL JUMP
icL=Ic-1 .
0C 5962 IIC = 1, ICw
I6CH = IC = i3C
IF(JF(ITCN 920 EQ4(JPUIC, 1) #1)) 50 Tu 5304
S:£2 CONTINUE
c LOOK FJR wudf 3ACK TO INSTRUCTIONN aFTEIr UnCong JUiF
ICN=IC+1

DC 5.83 INC= et dax

b o 3 - e T > -
o T T U et T

100
LFUJF(ZCC3)eGTo3) GJ TO £963
IEMIPLINC2YaEQlIP(ICHid+21)) 53 T Edew
2963 CCNTINUZ
1F NC PATH wAS FOUND, WRITEZ E£-XJIr HENCAGE
NCPATH = JUP(ICy1)+1
W ITE (5.43433) NOPATH
3933 FURMAT(LX 4T16,"%*% PISSIBLE E<WD=e U =alH T ¢
1 CIMSTRUSTLON™L«"UNLESS BY CaLbie'/)
3360 JF(JUF(ICeu) NEdUdANDJP(ICyB) eNE=IC)) T3 =7
wrITE (50,9434) 1CeJ2L1CH2)
%g FORMAT (L1332 0TEs FWO JUMP " 30", Zx
1 * IS NCT ASSOCLATED AITH AnY LO0P.™/)
2«7 CONTIMNUE
wrlTE(SD 435 10)
3500 FORMAT(OX."™LU0PS IN THIS FR0G=
bt 1X 3% LUOP # g TX g "FROM™e DR " T "y8X,"3_235%)
2C S¢9 IL=1.LF14x
WA ITE(Zdy.820) 19 JdFULASSILPAIR)) eZd o Pl o320
I 9C) WJFULTIAZSILFLIL)) 4 3)
3T25 FURMAT(3A el weuaOXaTlboligBReilbauynXx,yI3)
w-1TE(B2,°527) I
3530 FULWMAT(CX2aTS5G"FIrWAID JU'PT 433C3ZATE. wIT-
by "L&QP *y137)
XKFF=0
DC 59¢& IC=1,NJIMAX
IFGJR(ICs6) ewEsPliL))Y GO TO 233
IFGJPAIC 430 oHBE el eANTeUP(ICI3)eTed) GC T3 32=
W~ITE(S)93ede) 1CJP(ICH1)
3436 FOREMATOLIX TS 24"JduMPT 3" 2x INSTR s "ines/)
KFF=1
594 CONTINUE
IF(KFFaEQed) WRITE(5]4346G7)
IuC7? FORMAT (L1x,TE2,y"NOME"/)
539 CONTIHUE

Lo ; Y se -
PO R T IRV IR

x>
"o

:
~

s, 4 FooF <2 SN b tn b5 v I i St o

101

i Ty 22

¥ P2L11.23%

c oITIBLIZE TO SMZW LICF FrEE FROu=d4 (raf= (LTPG)
LFrPE=2
MSTCFH = ~X

c Aty LCOPS?

LF(LFPMAXe2Qee) Gu TO 23

YES. FESTORE LIGP TA3LE ENTRY

LPCLODES) = -~ P(.0DES)

" SET FLAG Tu STIF NUMZEKRS AT DeSTivwaTion
MSTCFL = JP(LPILJIDES) 42)

SET FiLas T3 STCP , AT JUwP

MSETCFZ = JPILE(LIDES) L 1)

' P24il.213

(@]

(@]

L 3rvEr 24339 13 APR g === PuI 92227

C

" TRIS RQUTINE FLiiud T4Z LOCk «UN2TF (LSao) 27

S L BACK JUP (I) Fo= =~EFE~ENCE PIC®L3E 1. 2I535:037.25
C

r-

CLmiaCM /LT0R/ LEAAXWLF (L) g LF D,y
LFNO=L
pe 1Q¢ LguT:;.LFMAx
AP (2o EQeUFILCONT)) GO TUu 3w
123 CONTINUE
AFLLPNOeEUdey) WAaZTE(SLy90CS)Y i
3270 FORMAT (2X"44+manlINGe LTOP NJs FI2 34K Juwk*la
1 * 0T FUUNG. /)
303 LPNUSLCONT
RETUF N
Ens
*{ F2uil.721
COMMONATINSTZUPX (2000 02) s JF 200 ve) vASTC g #ST 28Dy F B0

102

Crn{ii/le w/r i Lip il Ve gL llES

*T F2a11.723

LPR = LP4 A =)

B FlelleTelP211.701

(@] « O O OGO

<

O

aedl

75

AT JUMP Fo- aN QUTSLINE (ulk?

SrCr NODZS 2F L5I2 FrEE Prlor A ¢ aFn
(LFE3) SN JISTING

CCMME L T?

PeITE (53.40022) JPx(LInENM,2)

FCP AT (LiXe"™EL J, ="1+7)
SFUIRX Ll ENYe2) o2540) 32 TU 34s

CCmE T2 A LUISTILE L0k YET?
IF(UFXCLINE S 42) 4T, :STI3MY 57 YO 25
WCe CLNE?

TR (UFX(LTNE vMe2) o506 X)) OC TC 29C

i+Ce IMN AW JUTSIDZ LIIF?
IFUUPXULLINENMe2) e TaMSTLRP) GU TL .o
LAST LUCF?

SFLLUUES T el a) LULO02S5) = =Lk (ulIo)
FLCPES < Qet™18x) GO TC 23U

T,

i
(7]
m

Cu 50 LC = LCZZo.LPx

FOunL NEXT GUTSILE Lulr?
“FPULLCPrL)aTal) GO TS 72
CONTINUE

SET LEXT (UTSidE LLUP,

LUUES = JC ¢ ¢

FESTUFE LOUF TALLE ANJ FESET Flwdo
LF(LCRES) = =L®(.uDE3)

MSTUPE = JPILPILLIES) Q)

MITNFS = UPLLFULCJESY WL

¢C TG 203

SUS NMOT LINE

103
1o, warITEGSLe22) L™ wPCT2 ol (o) edT e) aiZ2ad)

i VLUP AL T oK) 4X2142) gl 2
Gl TC Wil
» NODE LIne

Cae wFPLELFP, ¢t

W-ITE(Sdgil) LINEn4erCT=a((0CH (Jead 9d=142) 0322 43)

: s JPAL L vE 10) ¢ FFG e IR X (L NENY) gyt T
Go TC W)
% CoM%ENT LLINE

300 WEITE(SL92) LilNE My S0 T o l(IPlel) vd=tvcroastel)
: v LIP XL TREN oK) o<220d) 4L 102 }
@ld AF(PCHT T o)) 2ETYR., i

. -’2—1'..7"

1 FURMAT (L SRS YN SR S Sci WA 1 T PSSR Xea-o.9chg9.42)
$. Sla11,4788

L OJIMVER 24y 1. WP~ . === PavI eal/s/

€ Tan™eINE ™ TL24%F C eTi7 o M2k S0 JI¢Ta,"y, 5 LR
I NPLE EA LT TL7 oMl a0E Tl T T LS NS T 2

o CCLNENT)
1L Pl il (10 guT gengmulslred(lutyly,; teoe, . 95h eumouy
: IxelwedeIne’rday)

12 FLAT 2T (oM al3gwsoydl ol a3 (28 020) gm0,y .

- A TRUYWEES RS Y

) F24114993

APPENDIX C
PROGRAM SPECIFICATIONS OF THE
MODIFIED ASSEMBLER

104

i e

105

This is a brief discussion of the size of the program and how much

time it takes to run. This modified assembler requires approximately

34K to load in a CDC 6600 and 54K to execute with its associated system
routines. The compile time is approximately 8.7 seconds, but it could
be loaded from disk in a fraction of that time. The execution time
depends on source program length to an extent, but mainly on source
program complexity. Execution times of 0.645 central processor (CP)
seconds to 9.1 CP seconds have been noted. These were for approximately
85 and 1200 program lines respectively including instructions and
comments. However, a test program of approximately 120 lines that had
many jumps took 8.2 CP seconds to execute. All these numbers depend
also on the host assembler to some extent. The host used is a fairly
sophisticated large program that can assemble either INTEL or MOTOROLA
source code. To modify the assembler, arrays totaling approximately
3100 words were required to be added. The present version can
accomodate source programs with up to 200 jumps, 100 loops, and 1000

lines of instructions and comments. mesg arrays can be easily adjusted

to smaller or larger source programs.,

e o

APPENDIX D
INTEL 8080 OP-CODE GROUPS

106

‘aia

R o Sl LA AL S A

3

107

For INTEL 8080 assembly language, checking op-codes to count
instructions is easier than checking mnemonics. Mnemonics would require
checking character by character. The result obtained would require
checking against a table or some standard to decide which ones to count
(NAL, NC, NIO, or NJ). But op-codes are made available in pass one by
this assembler for checking assembler directives (pseudo op-codes).
Since pseudo ops are of no concern for this analysis of instruction
types, only valid instructions are checked.

Instruction op-codes are grouped in a way that allows easy
instruction identification. Identification is made by using the last
digit of the op-code and the INTEL instruction type. The eight INTEL
instruction types (called K in the assembler) are based on the
references made and instruction length. These are used to determine the
instructions in each of three main op-code groups. These octal groups
are conveniently divided as 0 to 177, 200 to 277, and 300 to 376. In
the first group, all instructions for which K is three are arithmetic or
logical, except if the last digit (modulo 8) is two, or if the op-code
is 0 or 166. In the second group, all are arithmetic or logical. In
the third group, if K equals four, - the instructions are either jumps or
calls. But if K equals three, they are I/0 unless the last digit is six
which indicates arithmetic or logical immediate instructions. This is
why it is so easy to determine the type and count the numbers of each.
If the op-code does not fall into one of these groups, it is simply

counted as an executable instruction.

